babyrudin
- 8
- 0
Homework Statement
Let f(x) be an integrable complex-valued function on \mathbb{R}. We define the Fourier transform \phi=\mathcal{F}f by
\[\phi(t)=\int_{\infty}^{\infty} e^{ixt} f(x) dx.\]
Show that if f is continuous and if $\phi$ is integrable, then
\[f(x)=\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ixt} \phi(t) dt.\]
The Attempt at a Solution
So far I have
\[\int_{-\infty}^{\infty} e^{-ixt} \phi(t) dt = \lim_{a \to \infty} \int_{-a}^{a} e^{-ixt} \phi(t) dt = \lim_{b \to \infty} \frac{1}{b} \int_0^b da \int_{-a}^a e^{-ixt} \phi(t) dt = \lim_{b \to \infty} \frac{1}{b} \int_0^b da \int_{-\infty}^\infty \frac{2 \sin((y-x)a)}{y-x} f(y) dy.\]
What to do next?
Last edited: