Redox Titration - Determining the % of Iron II and Iron III

AI Thread Summary
To determine the percentage of Iron II and Iron III in a mixture, a redox titration using potassium permanganate is appropriate. The reaction involves the oxidation of Fe2+ to Fe3+, and the stoichiometry can be used to calculate the moles and grams of each iron species present. A volumetric procedure is required, and it may be beneficial to first reduce Fe3+ to Fe2+ using zinc before titration to ensure accurate results. The concentration of potassium permanganate must be prepared for the titration, and care should be taken to consider potential interferences, such as zinc ions. Understanding the electrochemical series can help clarify any concerns regarding the presence of zinc during the titration process.
xXAznGurlXx
Messages
8
Reaction score
0
determine the % of iron II and iron III in a mixture containing both, where i am given 200cm3 of a solution containing 1.3g of iron ions(Fe 2+ Fe 3+) using potassium magnanete.
I wrote down the equation already, and method, but i don't know how to work out the % from it :/
Can you please help or any ideas how to start?
 
Physics news on Phys.org
Having the equation (which you tell us that you worked out) allows you to use stoichiometry and formula weights or formula masses and fairly simple basic mathematics arithmetic. Realize, your reaction is oxidation of the Fe+2 by Mn04-, to become Fe+3 (and whatever becomes of the permanganate).

How many moles, and how many grams of Fe+3 did you find? From this, find how many grams of Fe+3 is in the sample.

... is there more to your task than you wrote in your question to the forum? Do you want ALL of the iron using a permanganate titration? I would imagine that you could use an EDTA titration to find all of the iron, and then use a permanganate titration to get the Fe+2; maybe you could first reduce the Fe+3 with some well chosen reducing agent before titrating ALL of the iron with permanganate.
 
Yes that's right, well firstly I am trying to work out how much iron is present altogether and how much of it is Iron II
on my task sheet all it says: You have to devise a volumetric procedure to determine the percentage of iron II and Iron III in a mixture containing both.

You are provided with 200cm3 of a solution containing between 1.1g - 1.3g of iron ions as a mixture of Fe2+ or Fe3+. You may assume that each of the 2 ions of is present to at least 30% by mass. But a balance is not avaliable.

I know that you use titration for this to find the concentration of Iron II first, but then i confused afterwards, are we suppose to make up the concentration for Potassium Managanate?

so we use the formulas, n= m/mr and c=nv.

(acidified) iron (III) is reduced with granulated zinc
2Fe3+(aq) + Zn(s) -> 2Fe2+(aq) + Zn2+(aq)MnO4-(aq) + 5Fe2+(aq) + 8H+(aq) " Mn2+(aq) + 5Fe3+(aq) + 4H2O(aq)
 
Last edited:
This level of electrochemistry I understood many years ago, so I'll just trust that your equations are correct:
(acidified) iron (III) is reduced with granulated zinc
2Fe3+(aq) + Zn(s) -> 2Fe2+(aq) + Zn2+(aq)


MnO4-(aq) + 5Fe2+(aq) + 8H+(aq) " Mn2+(aq) + 5Fe3+(aq) + 4H2O(aq

Since it has been so long ago; are you sure that the presence of Zinc ion is not an interference with the titration with permanganate? You could use a table of electrochemical series to decide this. Any other advisers?
 
symbolipoint said:
This level of electrochemistry I understood many years ago, so I'll just trust that your equations are correct:

Since it has been so long ago; are you sure that the presence of Zinc ion is not an interference with the titration with permanganate? You could use a table of electrochemical series to decide this. Any other advisers?

I think you use Zinc to reduce it to Fe2+ in order to find out the end point from that, once you titrated completely.But I am not so sure :/
My lecturer told me to look up on that reaction on how to reduce it, so i should think it is that
 
I don't get how to argue it. i can prove: evolution is the ability to adapt, whether it's progression or regression from some point of view, so if evolution is not constant then animal generations couldn`t stay alive for a big amount of time because when climate is changing this generations die. but they dont. so evolution is constant. but its not an argument, right? how to fing arguments when i only prove it.. analytically, i guess it called that (this is indirectly related to biology, im...
Back
Top