Is null(T-\lambdaI) invariant under S for every \lambda \in F?

  • Thread starter Thread starter pte419
  • Start date Start date
  • Tags Tags
    Invariant
pte419
Messages
4
Reaction score
0
Suppose S, T \in L(V) are such that ST=TS. Prove that null(T-\lambdaI) is invariant under S for every \lambda \in F.


I can't find anything helpful in my book, I'm not sure where to start...
 
Physics news on Phys.org
null(T-lambda*I) is just the set of all vectors x such that (T-lambda*I)x=0. So Tx-lambda*x=0. Or Tx=lambda*x. To show this is invariant under S you just have to show that if x satisfies that property, then so does Sx.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top