Using reduction of order for Non-Homogenous DE

  • Thread starter Thread starter juice34
  • Start date Start date
  • Tags Tags
    Reduction
juice34
I need help solving a higher order differential equation by reduction of order.
It will be greatly appreciated if all steps are posted as well!

y(Double Prime)-3y(Prime)+2y=5e^3x where y sub one =e^x.

Ive tried to get the answer but end up with 3 constants.
 
Physics news on Phys.org
the teachers example goes from w to u prime to u without integrating u prime to get u, where w=u prime and y=u*y(sub one)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top