Schwinger-Dyson equations for Quantum Gravity

mhill
Messages
180
Reaction score
1
using the Schwinger Dyson equations that gives us a differential expression for the functional Z[J] so Z[0] is just the path integral over 4-dimensional spaces .then for Einstein equation (no matter) they read (system of 10 functional equations)

R _{a,b}( -i \frac{ \delta Z (J)}{\delta J})+ J(x)Z(J)=0

then let's suppose we had a super-powerfull computer so we could solve these S-D equations Numerically could it be a solution to the problem of QG ?? , in fact could someone say me what methods are used to solve these kind of equations with functional derivatives ?? .. if possible in the perturbative and Non-perturbative expansions, thanks
 
Last edited:
Physics news on Phys.org
Well the functional derivative expansion maps directly into an expansion onto Feynman diagrams. But the expression you have written will probably blow up due in an uncontrollable way due to non-renormalizability. Also, R_{ab} is a function of position on that manifold, but position is only meaningful for a particular metric. If the metric itself is fluctuating, what exactly is the meaning of your equation then? I don't think this is the way to go about quantum gravity. What is Z[0]?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In her YouTube video Bell’s Theorem Experiments on Entangled Photons, Dr. Fugate shows how polarization-entangled photons violate Bell’s inequality. In this Insight, I will use quantum information theory to explain why such entangled photon-polarization qubits violate the version of Bell’s inequality due to John Clauser, Michael Horne, Abner Shimony, and Richard Holt known as the...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Back
Top