Therefore, the simplified function is:f(x) = (1-x)^4

Phuzz
Messages
1
Reaction score
0
1. Sum the Geometric Series 1-x+x2-x3+x4

and hence simplify the function

[f(x)]4 = 1 - x5
1-x+x2-x3+x4

Homework Equations





3. Not sure I quite get understand this properly, as my attempt doesn't seem quite right.


Basically I've gotten

S=1-x+x2-x3+x4

S=1-1+x-x2+x3
x x

which then subtracted becomes

s(1 - 1) = (1-1)+2x+x+x
x x

= 1 +4x
x

Then, putting that into the simplifying function part gives me

f(x) =

1 -x5
-1 +4x
x
 
Last edited:
Physics news on Phys.org
Notice that

1-x+x^2-x^3+\ldots=\sum_{n=0}^{\infty}(-1)^nx^n=\sum_{n=0}^{\infty}(-x)^n
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top