Group velocity, quantum mechanics

raul_l
Messages
105
Reaction score
0

Homework Statement



A particle in classical mechanics with a velocity v becomes a wave packet with a group velocity v_g in quantum mechanics.
I have to show that \vec{v} = \vec{v}_g

Homework Equations



\vec{v}_g = \frac{\partial \omega(\vec{k})}{\partial \vec{k}}

\omega(\vec{k}) = \hbar^{-1} \sqrt{m_{0}{2} c^4+\hbar^2 k^2 c^2}

The Attempt at a Solution



\vec{v}_g = \frac{\partial}{\partial \vec{k}} \hbar^{-1} \sqrt{m_{0}{2} c^4+\hbar^2 \vec{k} \vec{k} c^2} = \frac{\vec{k}}{\hbar \sqrt{m_{0}{2} c^4+\hbar^2 k^2 c^2}} = \frac{\vec{k}}{\hbar \sqrt{m_{0}{2} c^4+\hbar^2 k^2 c^2}} = \frac{m\vec{v}}{\hbar^2 E} = \frac{m\vec{v}}{\hbar^2 m c^2} = \frac{\vec{v}}{\hbar^2 c^2}
 
Physics news on Phys.org
In Wikipedia it's done like this:
v_g = \frac{\partial \omega}{\partial k} = \frac{\partial (E/\hbar)}{\partial (p/\hbar)} = \frac{\partial E}{\partial p} = ...

From there on it's fairly easy.

But I'm wondering what's wrong with my approach.
 
How come you don't get an hbar^2*c^2 from the chain rule in the numerator when you do your differentiation with respect to k?
 
How could I not see this.
I've never felt more stupid :redface:

Thanks :smile:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top