nietzsche
- 185
- 0
Homework Statement
Prove that if f(a) = 0, then f(x) = (x-a)g(x) where f and g are polynomial functions.
Homework Equations
<br /> x^n-a^n = (x-a)h_n(x)<br />
where hn(x) is a polynomial function.
The Attempt at a Solution
<br /> \begin{align*}<br /> f(x) &= f(x) - f(a)\\<br /> f(x) &= [\lambda_n x^n + \lambda_{n-1} x^{n-1} + ... + \lambda_1 x + \lambda_0] - [\lambda_n a^n + \lambda_{n-1} a^{n-1} + ... + \lambda_1 a + \lambda_0]\\<br /> f(x) &= \lambda_n (x^n-a^n) + \lambda_{n-1} (x^{n-1} - a^{n-1}) +...+ \lambda_1(x-a)+(\lambda_0 - \lambda_0)\\<br /> f(x) &= \lambda_n (x-a)h_n(x) + \lambda_{n-1} (x - a)h_{n-1}(x) +...+ \lambda_1(x-a)\\<br /> f(x) &= (x-a)g(x)<br /> \end{align*}<br /> where $ g(x) = \lambda_nh_n(x) + \lambda_{n-1}h_{n-1}(x) +...+ \lambda_1$<br />
Now, I think what I've done here is valid. But I assumed that the relevant equation that I posted is true, which (I think) it is. Can someone tell me if this is an acceptable proof?
Thanks.
Last edited: