Limit of rational function to rational power

vertciel
Messages
62
Reaction score
0

Homework Statement



Evaluate the limit, WITHOUT using l'Hôpital's rule:

\lim_{x \rightarrow -1} \frac{x^{1/3} + 1}{x^{1/5} + 1}


Homework Equations





The Attempt at a Solution



I tried to use the conjugate method which does not produce a useful outcome:

\underset{x\to -1}{\mathop{\lim }}\,\frac{{{x}^{1/3}}+1}{{{x}^{1/5}}+1}\left( \frac{{{x}^{1/3}}-1}{{{x}^{1/3}}-1} \right)=\underset{x\to -1}{\mathop{\lim }}\,\frac{{{x}^{2/3}}-1}{{{x}^{8/15}}-{{x}^{1/5}}+{{x}^{1/3}}-1}

Thank you for your help!
 
Physics news on Phys.org
u^{15} = x, ~then ~u^3 = x^\frac{1}{5} ~and ~u^5 = x^\frac{1}{3}

Then factor and cancel.
 
vertciel said:

Homework Statement



Evaluate the limit, WITHOUT using l'Hôpital's rule:

\lim_{x \rightarrow -1} \frac{x^{1/3} + 1}{x^{1/5} + 1}


Homework Equations





The Attempt at a Solution



I tried to use the conjugate method which does not produce a useful outcome:

\underset{x\to -1}{\mathop{\lim }}\,\frac{{{x}^{1/3}}+1}{{{x}^{1/5}}+1}\left( \frac{{{x}^{1/3}}-1}{{{x}^{1/3}}-1} \right)=\underset{x\to -1}{\mathop{\lim }}\,\frac{{{x}^{2/3}}-1}{{{x}^{8/15}}-{{x}^{1/5}}+{{x}^{1/3}}-1}

Thank you for your help!

That's not the "conjugate method". x^a- 1 is not always "conjugate" to x^a+ 1. A and B (both including roots) are "conjugate" if and only if AB does not have any roots. x^{1/2}- 1 is conjugate to x^{1/2}+ 1 because (x^{1/2}- 1)(x^{1/2}+ 1)= (x^{1/2})^2- 1^2= x- 1 but x^{1/3}+ 1 is conjugate to x^{2/3}- x^{1/3}+ 1 because (x^{1/3}+ 1)(x^{2/3}- x^{1/3}+ 1)= x+ 1

Instead use the facts that x+ 1= (x^{1/3}+ 1)(x^{2/3}- x^{1/3}+ 1) and that x+ 1= (x^{1/5}+ 1)(x^{4/5}- x^{3/5}+ x^{2/5}- x^{1/5}+ 1). Those are the "conjugates".
 
Thank you for your responses, Bohrok and HallsofIvy.

@HallsofIvy: Thanks for your clarification on conjugates.

How would you define a real conjugate then? Are two terms x and y conjugates of each other if and only x \times y are of degree 1 and do not have any fractional exponents?
 
Not necessarily of degree one but "does not have fractional exponents", yes.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top