Calculate Total Impedance Quickly in Series Circuit

  • Thread starter Thread starter weedannycool
  • Start date Start date
  • Tags Tags
    Parallel
AI Thread Summary
To calculate total impedance in a series circuit, the method of using 1/Zt = 1/Z1 + 1/Z2 is lengthy for multiple impedances. An alternative approach involves simplifying branches with capacitors in parallel by adding capacitances, but complications arise with series resistors. The discussion highlights the importance of tracking arithmetic errors, especially when dealing with complex numbers, which can be challenging without prior knowledge. It suggests that multiplying by the conjugate can simplify complex fractions. Overall, careful layout and explanation of calculations are crucial for accuracy in impedance calculations.
weedannycool
Messages
35
Reaction score
0
to find the the total impedance of a circuit i use 1/Zt=1/Z+1/Z...ect. this way is quite lenghty when dealing with more than two impedances.

i wonder if there is a qicker way of doing it maybe by just using the magnitude of the capacitor to get rid of the imaginary part.

for example if i had a risistor , a capacitor. and a inductor in series with a risistor.

what i did was find the impedances of each branch then used the eq ZT=(Z1.Z2)/Z1+Z2 to find the impedance of the first to branch then simpify the circuit replacing the two branches with a single impedance and used the eq again.

but it doesn't seem to agree with my lecture's answer.
 
Engineering news on Phys.org
It is messier than series circuits.

I assume some voltage and then work out the currents for the branches of the parallel network.

Then you can just add the currents to get a total current and then get back to an impedance by dividing the voltage by this current.

I suppose it amounts to the same process. Because it involves smaller steps, you can track down atithmetic errors easier, I guess.

If you have capacirors in parallel, you can certainly simplify those (by just adding the capacitances) , but not if they have series resistors or other extra components.
 
What it i was just given a current source and no voltage was given. i guess i would have to do it the other way. i tend to mess up the arithmetic since i havn't covered complex numbers yet. If u have a complex number on the bottom of the first equation then i am not sure what to do to get rid of it.
 
It is very easy to get the arithmetic wrong with these, so it is important to lay the solution out well so you can check it through afterwards. Explain what you are doing and leave blank lines between calculations.

If you haven't done complex numbers, you will find these calculations pretty weird.

You may be able to follow this example:

complex no calc.PNG


It starts off with a complex number 12 - j40 in the bottom line. See what happens when you multiply by 12 + j40 / 12 + J40. The J's vanish and you get something you can deal with.
 
Thank you. This should help me.
 
Very basic question. Consider a 3-terminal device with terminals say A,B,C. Kirchhoff Current Law (KCL) and Kirchhoff Voltage Law (KVL) establish two relationships between the 3 currents entering the terminals and the 3 terminal's voltage pairs respectively. So we have 2 equations in 6 unknowns. To proceed further we need two more (independent) equations in order to solve the circuit the 3-terminal device is connected to (basically one treats such a device as an unbalanced two-port...
suppose you have two capacitors with a 0.1 Farad value and 12 VDC rating. label these as A and B. label the terminals of each as 1 and 2. you also have a voltmeter with a 40 volt linear range for DC. you also have a 9 volt DC power supply fed by mains. you charge each capacitor to 9 volts with terminal 1 being - (negative) and terminal 2 being + (positive). you connect the voltmeter to terminal A2 and to terminal B1. does it read any voltage? can - of one capacitor discharge + of the...
Thread 'Weird near-field phenomenon I get in my EM simulation'
I recently made a basic simulation of wire antennas and I am not sure if the near field in my simulation is modeled correctly. One of the things that worry me is the fact that sometimes I see in my simulation "movements" in the near field that seems to be faster than the speed of wave propagation I defined (the speed of light in the simulation). Specifically I see "nodes" of low amplitude in the E field that are quickly "emitted" from the antenna and then slow down as they approach the far...

Similar threads

Back
Top