Alcubierre drive has trouble with quantum effects

bcrowell
Staff Emeritus
Science Advisor
Insights Author
Messages
6,723
Reaction score
431
A recent paper says that Alcubierre's warp drive probably won't work due to quantum effects:

http://www.technologyreview.com/blog/arxiv/23292/ -- nontechnical summary

http://arxiv.org/abs/0904.0141 -- paper

Speaking as a non-specialist, it seems hard to tell which predictions about the interface between QM and GR to take seriously and which ones not to take seriously. Some, like Hawking radiation, seem fairly secure. Hawking radiation has been studied thoroughly over a long period of time, and the reasons behind it seem relatively model-independent.

On the other hand, semiclassical gravity makes some predictions that seem relatively shaky, as far as I can tell as an outsider looking in, and without having mastered the techniques of the field. For instance, there's a claim that quantum-mechanical effects can strongly affect the process of formation of black holes, even causing the collapse to halt under certain conditions: http://arxiv.org/abs/0909.4157
 
Last edited:
Physics news on Phys.org
bcrowell said:
A recent paper says that Alcubierre's warp drive probably won't work due to quantum effects:

http://www.technologyreview.com/blog/arxiv/23292/ -- nontechnical summary

http://arxiv.org/abs/0904.0141 -- paper

...

We already have a thread discussing this. I reported the same article and Tech Review item in April 2009:
https://www.physicsforums.com/showthread.php?t=305091

It looks sound. Alcubierre's goose is probably cooked. May even be overdone. :biggrin:

About what really happens at the (supposed) classical black hole singularity, you cited just one of many recent papers which explore what might happen in the bh pit, when quantum effects are factored in.
There is a lot of work in progress. We just need to keep an open mind and wait.

As quantum gravity BH papers appear, they usually get spotted and added to the QG bibliography in Beyond forum. That is a separate question. I'd say forget Alcubierre but keep an eye out for the next few QG papers on BH.
 
Last edited:
The paper from Visser and colleagues is motivated as follows. Is Lorentz invariance fundamental? Maybe not (no working models, but several very interesting lines of pursuit from Volovik, Visser, Xiao-Gang Wen, and Horava). However, if Lorentz invariance is not fundamental and black holes exist, we can have a perpetual motion machine (I think this is Ted Jacobson's result). So maybe black holes don't exist.

However, there is mention of "black holes" in the literature about Horava gravity. A footnote in http://arxiv.org/abs/0905.4480 says "Due to the lack of Lorentz invariance in UV, the very meaning of the horizons and Hawking temperature would be changed from the conventional ones. The light cones would differ for different wavelengths and so different particles with different dispersion relations would see different Hawking temperature TH and entropies, the Hawking spectrum would not be thermal. But from the recovered Lorentz invariance in IR (with = 1), the usual meaning of the horizons and T as the Hawking temperature would be “emerged” for long wavelengths. The calculation and meaning of the temperature should be understood in this context."
 
marcus said:
We already have a thread discussing this. I reported the same article and Tech Review item in April 2009:
https://www.physicsforums.com/showthread.php?t=305091

Ah, thanks for pointing that out. I feel silly. Arxiv blog is giving a retrospective of 2009, but I didn't realize that, thought this was a new article.
 
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Back
Top