Prove rigorously: lim (3^n)/(n) = 0

  • Thread starter Thread starter kingwinner
  • Start date Start date
kingwinner
Messages
1,266
Reaction score
0

Homework Statement


PROVE rigorously from the definition that
lim (3n)/(n!) = 0.
n->∞

Homework Equations


N/A

The Attempt at a Solution


By definition, a real number sequence
a(n)->a iff
for all ε>0, there exists an integer N such that n≥N => |a(n) - a|< ε.

|(3n)/(n!)|<...< ε
Now how can I find N? The usual approach to find N would be to set |a(n) -L|< ε and solve the inequality for n. But here in |(3n)/(n!)|<...< ε, I don't think we can solve for n. (because n is appearing everywhere. n(n-1)(n-2)...2x1, and n also appears on the numerator)

Any help is greatly appreciated!



[note: also under discussion in Math Links forum]
 
Last edited:
Physics news on Phys.org
Oh, come on. 3^6/6!=81/80. The next term multiplies that by 3/7. That factor is less than 1/2. The next term multiplies that by 3/8, that's also less than 1/2. The next term multiplies that by 3/9, also less than 1/2. Can you find an N such that (81/80)*(1/2)^N is less than epsilon? I think you probably can. Call off the debate.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top