Identical Fermions in an infinite square well

msumm21
Messages
247
Reaction score
28
If you have 2 identical, noninteracting Fermions in an infinite 1 dimensional square well of width a, I was thinking the state would be:
\frac{1}{\sqrt{2}}\psi_1(x_1)\psi_1(x_2)(\uparrow\downarrow - \downarrow\uparrow )
where \psi_1 is the ground state of the single particle well problem.

However, I just looked in Griffths "Introduction to QM, 2nd Ed" and it says there is no state with the energy of that state and that in fact the ground state is \psi_1(x_1)\psi_2(x_2)-\psi_2(x_1)\psi_1(x_2).

The state I gave seems to be (1) antisymmetric, (2) an eigenstate of the Hamiltonian, and (3) have lower energy than the ground state given by Griffths.

Do you see a problem with ground state I gave?
 
Last edited:
Physics news on Phys.org
You've put two fermions on the ground state of the potential, with their spin making up a singlet. I think your GS is fine. Griffith's solution may be referred to spinless particles.
 
In the same line as jrlaguna said, fermions in QM just refers to particles with fermi-dirac statistics. The equivalence of spin1/2 particles and fermions are only in relativistic quantum field theory.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
According to recent podcast between Jacob Barandes and Sean Carroll, Barandes claims that putting a sensitive qubit near one of the slits of a double slit interference experiment is sufficient to break the interference pattern. Here are his words from the official transcript: Is that true? Caveats I see: The qubit is a quantum object, so if the particle was in a superposition of up and down, the qubit can be in a superposition too. Measuring the qubit in an orthogonal direction might...
Back
Top