Euler's solution to the Basel problem

  • Thread starter Thread starter hover
  • Start date Start date
AI Thread Summary
Euler's solution to the Basel problem involves expressing sin(pi x)/(pi x) as an infinite product, which is zero at nonzero integers. He conjectured that this expression equals the product over n of (1 - x^2/n^2), leading to the identification of coefficients that ultimately yield the value of the sum of the inverse squares. The method can also be applied using cos(pi x), resulting in a similar product form with different zeroes. Both approaches confirm that the sum of the inverse squares of odd numbers relates to the Riemann zeta function, establishing that ζ(2) = π²/6. Euler's conjecture laid the groundwork for later rigorous proofs of this identity.
hover
Messages
342
Reaction score
0
Can someone find a good explanation of how Euler did it? I can't seem to find anything article or whatnot that carefully explains what he did to solve the problem. From what I can gather, he seems to follow a method of writing out sin(x) as an infinite series(taylor polynomial) and divides by x and from there I get lost in the mishmash. Why does he even choose to use sin(x) and not cos(x) or tan(x) for that matter?
 
Mathematics news on Phys.org
The function

sin(pi x)/(pi x)

is zero at the nonzero integers, so it should be equal to:

sin(pi x)/(pi x) = product over n of (1-x^2/n^2)

The right hand side is a product that converges and it is zero when x isa nonzero integer. The normalization is correct, because for x = 1 it is 1 while the limit for x to 1 of the left hand side is also 1. So, the above indentity looks correct (but you can't rigorously prove that, Euler only conjectured the identity).

The coefficent of x^2 of the left hand side is:

-pi^2/6

And from the right hand side it is minus the sum of 1/n^2 from n = 1 to infinity. To get an x^2 term, you need to take it from one factor of the infinite product, say the nth, and then you need to take the 1 from all other factors. You then get -1/n^2, and all n from 1 to infinity contribute.

Now, you can just as well do this using cos(pi x). The zeroes are at x = (n+1/2), so you would conjecture that:

cos(pi x) = Product over n of [1-x^2/(n+1/2)^2]

Normalization is correct as can be seen from putting x = 1 on bith sides. Extracting the coefficient of x^2 gives:

-pi^2/2 = -Sum over n from n= 0 to infinity of 1/(n+1/2)^2

You can rewrite this as:

sum over n 1/(2n+1)^2 = pi^2/8

You then use the following trick. If we put:

Zeta(2) = sum from n = 1 to infinity of 1/n^2

Then clearly the sum of the inverse squares of the even numbers only is:

sum from n = 1 to infinity of 1/(2n)^2 = 1/4 Zeta(2)

So, the sum over only the inverse squares if the odd numbers must be
3/4 Zeta(2). So we have:

pi^2/8 = 3/4 Zeta(2) -------->

Zeta(2) = pi^2/6.
 
  • Like
Likes Sergejs Boroviks
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top