Find General Statement of Matrix Binomials & Test Validity with LS/RS Check

  • Thread starter Thread starter flutterfly
  • Start date Start date
  • Tags Tags
    Matrix
flutterfly
Messages
7
Reaction score
0
Matrix binomials...please help!

Find the general statement that express Mn in terms of aX and bY if:
A = aX and B = bY
<br /> M = \begin{pmatrix} a+b &amp; a-b \\a-b &amp; a+b \end{pmatrix} <br />
M = A + B
M2 = A2 + B2
<br /> X = \begin{pmatrix} 1 &amp; 1 \\1 &amp; 1 \end{pmatrix} <br />
<br /> Y = \begin{pmatrix} 1 &amp; -1 \\-1 &amp; 1 \end{pmatrix} <br />

How would i do this question:... is it a matter of LS and RS check?
Test the validity of your general statement by using different values of a, b, and n?
 
Last edited:
Physics news on Phys.org


i don't understand your question - note the following tex to help write a matrix
A = \begin{pmatrix} a &amp; b \\c &amp; d \end{pmatrix}
 


What are XY and YX? If you expand (A+B)^n what terms can you eliminate? How can you simplify the remaining terms?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top