Cauchy-Schwarz -> AM-HM inequality

  • Thread starter Thread starter EighthGrader
  • Start date Start date
  • Tags Tags
    Inequality
EighthGrader
Messages
11
Reaction score
0

Homework Statement



Prove the AM-HM inequality using the Cauchy-Schwarz Inequality.

Homework Equations



Cauchy Schwarz Inequality:

<br /> \[ \biggl(\sum_{i=1}^{n}a_{i}b_{i}\biggr)^{2}\le\biggl(\sum_{i=1}^{n}a_{i}^{2}\biggr)\biggl(\sum_{i=1}^{n}b_{i}^{2}\biggr)\<br />

AM-HM inequality:

A(n,a_i) = \frac{a_1 + a_2+\cdots+a_n}{n}\


H(n,a_i) = \frac{n}{\frac{1}{a_1}+\frac{1}{a_2}+ \cdots+\frac{1}{a_n}}\


A(k,x_i) \geq H(k,x_i)\

The Attempt at a Solution



I just need some tips on how to approach this problem. How do I introduce the term n on both sides?
 
Physics news on Phys.org
\left(\sum _{i=1}^n \frac{1}{a_i}\right)\left(\sum _{i=1}^n a_i\right)\geq \left(\sum _{i=1}^n \frac{\sqrt{a_i}}{\sqrt{a_i}}\right){}^2
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top