Finding the resultant displacement vector.

AI Thread Summary
Jodie walks a total of 14m east, 42m south, 32m west, 13m south, and 9m east to reach the lab. To find the resultant displacement vector, the individual vectors should be combined step-by-step, starting with the first two vectors. The process involves calculating the resultant of the first two vectors, then combining that result with the next vector, and continuing until all vectors are accounted for. The total distance Jodie walked can be calculated by summing the lengths of all segments. The final position of the lab relative to the classroom can be determined from the resultant vector.
venomnert
Messages
6
Reaction score
0

Homework Statement


In order to get from her classroom too the lab without going through the crowded rotunda, Jodie walks 14m (E), 42m(S), 32m(W), 13m(S), and 9m(E). Draw a scale diagram to represent all the initial displacement vector and the resultant displacement vector in Jodie's walk to the lab. What distance did Jodie walk in getting to the lab? What is the position of the lab with respect to the classroom?


Homework Equations


I don't know how to connect the tail and the head and how to calculate the resultant.

The Attempt at a Solution


Hi guys, this my first post in PF and i am new to physics and i need all the help i could get so please guys help me with my homework thanks. By the way i am taking grade eleven physics.
 
Physics news on Phys.org
Try going step-by-step. You have 5 vectors (call them V1, V2, V3, V4 & V5). Find the resultant of V1 and V2, call it V6. Now find the resultant between V3 and V6. etc.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top