crypto_rsa
- 4
- 0
Why "modulo m1" and "modulo m2" implies "modulo [m1, m2]"
If a \equiv r (mod m1) and a \equiv r (mod m2) then a \equiv r (mod [m1, m2]), where [a, b] is the least common multiple of a and b.
I have tried to prove that.
Assume that
[m_{1}, m_{2}] = l_{1}m_{1} = l_{2}m_{2}
and
a = k_{1}m_{1} + r
a = k_{2}m_{2} + r
Then
al_{1} = k_{1}l_{1}m_{1} + rl_{1}
al_{2} = k_{2}l_{2}m_{2} + rl_{2}
thus
a(l_{1} - l_{2}) = [m_{1}, m_{2}](k_{1} - k_{2}) + r(l_{1} - l_{2})
and
a = [m_{1}, m_{2}] {(k_{1} - k_{2}) \over (l_{1} - l_{2})} + r
In order to
a \equiv r\ (mod [m_{1}, m_{2}]), or a = K[m_{1}, m_{2}] + r
we have to prove that
(l_{1} - l_{2})\; | \; (k_{1} - k_{2})
But how?
If a \equiv r (mod m1) and a \equiv r (mod m2) then a \equiv r (mod [m1, m2]), where [a, b] is the least common multiple of a and b.
I have tried to prove that.
Assume that
[m_{1}, m_{2}] = l_{1}m_{1} = l_{2}m_{2}
and
a = k_{1}m_{1} + r
a = k_{2}m_{2} + r
Then
al_{1} = k_{1}l_{1}m_{1} + rl_{1}
al_{2} = k_{2}l_{2}m_{2} + rl_{2}
thus
a(l_{1} - l_{2}) = [m_{1}, m_{2}](k_{1} - k_{2}) + r(l_{1} - l_{2})
and
a = [m_{1}, m_{2}] {(k_{1} - k_{2}) \over (l_{1} - l_{2})} + r
In order to
a \equiv r\ (mod [m_{1}, m_{2}]), or a = K[m_{1}, m_{2}] + r
we have to prove that
(l_{1} - l_{2})\; | \; (k_{1} - k_{2})
But how?