Two Parallel Voltage sources and KVL

AI Thread Summary
Applying Kirchhoff's Voltage Law (KVL) to parallel voltage sources is invalid unless the sources are identical, as this leads to mathematical inconsistencies. When different voltage sources are connected in parallel, the voltages do not sum to zero around the loop, violating KVL. Practically, this can result in one source charging the other or overheating due to mismatched voltages. The fixed nature of voltage sources means that treating them as variable leads to contradictions, similar to asserting that 3 equals 2. Therefore, KVL cannot be applied in such scenarios without causing errors.
ecy5maa
Messages
29
Reaction score
0
Hi,

I understand that you cannot apply KVL to voltage sources connected in parallel, unless both voltage sources are the same, as this violates KVL.

However, I want to know why? Just a simple 2-3 line explanation will suffice.

Regards
 
Engineering news on Phys.org
From a KVL point of view, if you summed up the voltages around the loop, they wouldn't add up to zero.

From a practical point of view, you'll have one battery charging the other (assuming the polarities were correct, and the voltages were appropriate), or, if they were severely mismatched, one (if not both) would probably blow up. That or the wire connecting them would get really, really hot (acting as a low resistance resistor).

EDIT: I should clarify that when you go around the loop and take account of all the voltages, you have to set that to zero, which leads to mathematical inconsistencies as sophiecentaur mentions below. For instance, write out the KVL equation for a 2V supply in parallel with a 3V supply, such that like terminals are connected together (+ with +, - with -).
 
Last edited:
ecy5maa said:
Hi,

I understand that you cannot apply KVL to voltage sources connected in parallel, unless both voltage sources are the same, as this violates KVL.

However, I want to know why? Just a simple 2-3 line explanation will suffice.

Regards

A voltage source is a fixed value, whatever the load. Modelling the effect of connecting two in parallel would be like trying to do maths but saying 3=2.
 
Very basic question. Consider a 3-terminal device with terminals say A,B,C. Kirchhoff Current Law (KCL) and Kirchhoff Voltage Law (KVL) establish two relationships between the 3 currents entering the terminals and the 3 terminal's voltage pairs respectively. So we have 2 equations in 6 unknowns. To proceed further we need two more (independent) equations in order to solve the circuit the 3-terminal device is connected to (basically one treats such a device as an unbalanced two-port...
suppose you have two capacitors with a 0.1 Farad value and 12 VDC rating. label these as A and B. label the terminals of each as 1 and 2. you also have a voltmeter with a 40 volt linear range for DC. you also have a 9 volt DC power supply fed by mains. you charge each capacitor to 9 volts with terminal 1 being - (negative) and terminal 2 being + (positive). you connect the voltmeter to terminal A2 and to terminal B1. does it read any voltage? can - of one capacitor discharge + of the...
Thread 'Weird near-field phenomenon I get in my EM simulation'
I recently made a basic simulation of wire antennas and I am not sure if the near field in my simulation is modeled correctly. One of the things that worry me is the fact that sometimes I see in my simulation "movements" in the near field that seems to be faster than the speed of wave propagation I defined (the speed of light in the simulation). Specifically I see "nodes" of low amplitude in the E field that are quickly "emitted" from the antenna and then slow down as they approach the far...
Back
Top