Actual Distance Between Atoms of an Ideal Gas

hawflakes
Messages
2
Reaction score
0
Hi, I am working on a project in which I need to know the distance between the particles in an ideal gas system. I have tried searching (google) for it but was unable to come with any actual values, just general terms. Can anyone refer me to where I might find this? Thanks
 
Physics news on Phys.org
1 mole of a gas has ~ 10^24 molecules and occupies about 22 liters (or 22 dm^3) at STP. So, the average spacing between molecules is roughly the cube root of 22*10^-24 dm ~ 3*10^-8 dm = 3*10^-9 m or about 30 angstroms or 3 nm.

Note : This distance is a function of temperature. Use the Ideal Gas Law to figure out for other P,T values.

The mean free path calculator here also gives average intermolecular spacing.
http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/menfre.html#c3

I know that Nitrogen deviates little from ideality over a fair range of temperatures and pressures...so here goes (now using this calculator, to double check):

At 760mm Hg, 273 K and molecular diameter of 2.0 A (2.0 * 10^-10 m), which is the diameter of a N2 molecule, the calculator gives 3.3 nm...close enough to my guess. :smile:
 
Last edited:
Thank you!
 
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top