Proving triangles with vector methods

  • Thread starter Thread starter crayzwalz
  • Start date Start date
  • Tags Tags
    Triangles Vector
crayzwalz
Messages
10
Reaction score
0

Homework Statement



In the following diagram D and E are the midpoints of AB and AC. Use vector methods to prove that DE = 1/2BC

Homework Equations



DE = 1/2 BC

The Attempt at a Solution



AD = 1/2AB
AE = 1/2AC

AD + DE = AE
DE = -AE + AD
DE = -1/2AC + 1/2AD
IF BC = -AC + AB
AND DE = -1/2AC + 1/2AB
THEN 1/2BC = DE
Diagram -
detriangle.jpg
 
Physics news on Phys.org
hi crayzwalz! :smile:

yes, that's correct, except …

i] your + and - are the wrong way round in

DE = -AE + AD
and
IF BC = -AC + AB

ii] you should write it all out in one sequence, with the first line

DE =

and the last line

= 1/2BC :wink:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top