General solution for homogeneous equation

magnifik
Messages
350
Reaction score
0
i am having trouble finding the general solution for the given homogeneous equation:

x2yy' = (2y2 - x2)
which i made into
x2dy = (2y2 - x2) dx

i turned it into the following:
(2y2 - x2) dx - x2 dy = 0
then i used substitution of y = xv and got
(2(xv)2 - x2 - x2v) dx - x3 dv = 0
then i turned this into the following ... i think this may be the part i did wrong
(2v2 - 1 - v) dx - x dv = 0
then the integrating factor was
1/x(2v2 - 1 - v)
so...
dx/x - dv/(2v2 - 1 - v) = 0
i am stuck here. i know the first part is ln x, but I'm not sure if the second part is [ln (2v2 - 1 - v)]/(4v - 1)...if this part is right then i am stuck again here. i don't know how to get to the final solution which is

y(x) = x + Cx4/1 - 2Cx3

please help. thx.
 
Last edited:
Physics news on Phys.org
magnifik said:
i am having trouble finding the general solution for the given homogeneous equation:

x2dy = (2y2 - x2) dx

i turned it into the following:
(2y2 - x2) dx - x2 dy = 0
then i used substitution of y = xv and got
(2(xv)2 - x2 - x2v) dx - x3 dv = 0
then i turned this into the following ... i think this may be the part i did wrong
(2v2 - 1 - v) dx - x dv = 0
then the integrating factor was
1/x(2v2 - 1 - v)
so...
dx/x - dv/(2v2 - 1 - v) = 0
i am stuck here. i know the first part is ln x, but I'm not sure if the second part is [ln (2v2 - 1 - v)]/(4v - 1)...if this part is right then i am stuck again here. i don't know how to get to the final solution which is

y(x) = x + Cx4/1 - 2Cx3

please help. thx.

Better if you write your final solution as

y(x) = \frac{x+Cx^4}{1-2Cx^3}
 
that doesn't help me :\
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top