Differential geoemtry tangent lines parallel proof

hlin818
Messages
30
Reaction score
0

Homework Statement



Prove that a(s) is a straight line if and only if its tangent lines are all parallel.

Homework Equations



Frenet serret theorem

The Attempt at a Solution



I'm confused on the direction "if the tangent lines are parallel then a(s) is a straight line".

Assume all the tangent lines of a(s) are parallel. So the tangent vector T is the same for all points xo on the curve a(s) and the values of T(s) of any two points on the curve are parallel. Thus T(s) is constant, and T'(s)=0 which implies that the curvature is zero, and thus a(s) must be a straight line.
 
Last edited:
Physics news on Phys.org
so you know the direction fo the tanget vector at all times, eg.

T(t) = a.g(t)

where a is a constant vector and g is a scalar function. Think about integrating this to get the original curve and/or the effect on other parameters, curvature etc.
 
Is the way I did it incorrect?
 
hlin818 said:
Is the way I did it incorrect?

It seems fine to me.
 
Thanks!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top