Jorjy said:
This might be a stupid question..
Why does curved spacetime cause objects with mass to accelerate towards each other?
If I placed a massive particle next to a larger massive object, at rest with respect to the large object, shouldn't the particle stay at rest?
First of all, you should probably simplify the problem by thinking of it in terms of test particles. Therefore, curved space-time, the curvature being due to mass (and perhaps to other things in GR that can cause curvature), will cause very-low-mass test particles near the massive object to follow a curved path as if they were attracted to said object by some force.
Note the difference - when you start to talk about particles themselves curving space-time, the picture becomes a lot more complicated, because you have to take into account all sorts of back-reactions as the massive particles move. When you think about particles of low enough mass that they have an insignificant effect on curvature, used to probe the structure of a static space-time around some simple massive object (like a black hole), it becomes a lot easier situation to analyze.
The other point you are most likely missing is that it's not space that's curved, it's space-time. Take a snapshot of the particle relative to the large mass at some "instant in time", it has a certain distance and a certain velocity. Take another snapshot of the particle relative to the large mass at some later "instant in time". Now it is both closer to the large mass, and has a velocity that points towards the large mass. The conclusion is that the mass has somehow "attracted" the particle, even though it's simply been following a geodesic.
The notion of what particular surface, i.e. set of points, of space-time, that corresponds to an "instant in time" is observer dependent - the easiest solution is to use a very slowly moving particle (perhaps one that is even initially not moving at all), in which case the notion of time experienced by said test particle is the same as the notion of time defined by the geometry of the large mass.
If you use a short time interval, you'll see that the distance moved by an initally stationary particle is quadratic in time, 1/2 a t^2, so to first order in time it's zero, while the acquired velocity is linear, a t, and that's what you expect the geometry to reproduce.
The sort of diagrams you really need to draw to find the velocity cab be found in
Donald Marolf, "Spacetime Embedding Diagrams for Black Holes",
http://arxiv.org/abs/gr-qc/9806123. The diagarams that show spatial curvature are interesting, but won't help you understand the answer to your question.
However, you'll need to be familiar with the space-time diagrams of special realtivity and the Lorentz transform to really understand Marolf's particular embedding fully, and the article itself is written from a rather technical viewpoint.