Global GR Theorems without Energy Conditions?

PAllen
Science Advisor
Messages
9,325
Reaction score
2,537
It has come up a few times in recent threads here that the energy conditions on the stress-energy tensor (weak, null, dominant, etc) traditionally used to prove global results (e.g. the singularity theorem, the positive energy theorem, geodesic motion theorems*) are problematic: they allow more than they should, yet prohibit physically plausible scenarios as well. It strikes me that the original motivation for these was the sense of 'generality' - the you don't need to assume a theory of matter. However, since this has not panned out so well, I ask:

Does anyone know of attempts to re-prove such theorems on the basis of plausible constraints on the matter Lagrangian (or general forms of the Lagrangian) rather than the traditional energy conditions?



----
*There are papers proving rigorously that if you carefully take the limit as a body shrinks in size and mass, that it must follow a geodesic of the background geometry. Such theorems as I've seen must assume an energy condition as part of the proof. I have also seen a paper that shows that the energy conditions is *necessary*. That is, if you do the limiting process without any constraint on T, not only is non-geodesic motion possible, but even spacelike paths are possible. This is not really surprising given the possible properties of exotic matter.
 
Physics news on Phys.org
I found a paper on this theme:

http://arxiv.org/abs/1012.6038

This specifically addresses the issue of scalar fields which are a thorn in the side of the energy conditions.
 
I think there are some cases where you can't re-prove the theorems because there are known counterexamples. For instance, the nonzero cosmological constant violates some energy conditions, and I think this means that certain inferences made in the past from CMB observations have had to be reanalyzed.
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
Back
Top