Jordan Normal Form: Multiplicities Explained

  • Thread starter Thread starter Ted123
  • Start date Start date
  • Tags Tags
    Form Normal
Ted123
Messages
428
Reaction score
0
2z7ifpl.jpg


In both cases the algebraic multiplicty is 7, minimal and geometric multiplicities are both 3.

Why does this mean knowing these multiplicies is not enough to deduce the Jordan normal form?
 
Physics news on Phys.org
Because those matrices have different Jordan normal forms even though all the multiplicities are the same
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top