dingo_d
- 199
- 0
Homework Statement
I have the metric of a three sphere:
g_{\mu \nu} =<br /> \begin{pmatrix}<br /> 1 & 0 & 0 \\<br /> 0 & r^2 & 0 \\<br /> 0 & 0 & r^2\sin^2\theta<br /> \end{pmatrix}
Find Riemann tensor, Ricci tensor and Ricci scalar for the given metric.
Homework Equations
I have all the formulas I need, and I calculated the necessary Christoffel symbols, by hand and by mathematica and they match. There are 9 non vanishing Christoffel symbols. Some I calculated and for others I used the symmetry properties and the fact that the metric is diagonal (which simplifies things).
But when I go and try to calculate Riemman tensor via:
R^{a}_{bcd}=\partial_d \Gamma^a_{bc}-\partial_c\Gamma^a_{bd}+\Gamma^m_{bc}\Gamma^a_{dm}-\Gamma^m_{bd}\Gamma^a_{cm}
I get all zeroes for components :\
And I kinda doubt that every single component is zero.
The Christoffel symbols are:
<br /> \begin{array}{ccc}<br /> \Gamma _{\theta r}^{\theta } & = & \frac{1}{r} \\<br /> \Gamma _{\phi r}^{\phi } & = & \frac{1}{r} \\<br /> \Gamma _{r\theta }^{\theta } & = & \frac{1}{r} \\<br /> \Gamma _{\theta \theta }^r & = & -r \\<br /> \Gamma _{\phi \theta }^{\phi } & = & \cot (\theta ) \\<br /> \Gamma _{r\phi }^{\phi } & = & \frac{1}{r} \\<br /> \Gamma _{\theta \phi }^{\phi } & = & \cot (\theta ) \\<br /> \Gamma _{\phi \phi }^r & = & -r \sin ^2(\theta ) \\<br /> \Gamma _{\phi \phi }^{\theta } & = & -\cos (\theta ) \sin (\theta )<br /> \end{array}<br />