Linearised Gravitational Waves Derivation

tomelwood
Messages
29
Reaction score
0
Hi
A topic came up in a lecture the other day about how if certain simplifications are made, then the Einstein equation reduces to a form of the wave equation.
When I look at derivations of how this happens, I get a little confused as to how this happens.
I think I'm posting it in the right place putting it here, as it's not strictly a homework question, since it is only to help my understanding of the course so far...

Looking at the website http://iopscience.iop.org/1367-2630/7/1/204/fulltext/#nj192710s2
I don't understand why you are allowed to take the step made in Equation (2.9) - i.e. why does putting a prime on the LHS simply mean that you can go ahead and "prime" all of the h in the RHS? If this is allowed, then I can see how the rest of that equality works, no problem.

Secondly, taking a step or two back, where it says substituting "h-bar" into (2.6) "and expanding", how does this simplify down to (2.7)? Because I can see how the terms where both indices are "downstairs" are changed, but what about the h's in the form of a (1,1) tensor? That is one upstairs and one downstairs? I tried applying the Minkowski metric to the (1,1) h, to try and get into "downstairs format" for me to work with, but I was left with some delta's.. Specifically (apologies in advance for appalling Latex):

h^{c}_{a,bc}=\eta^{da}\bar{h}_{ab,bc}-\frac{1}{2}\eta_{ab}\eta^{ad}\bar{h}_{,bc}=\bar{h}^{d}_{b,bc}-\frac{1}{2}\delta\stackrel{d}{b}\bar{h}_{,bc}

and I don't understand how to move on from here?

Any observations would be greatly appreciated.
 
Last edited:
Physics news on Phys.org
tomelwood said:
Looking at the website http://iopscience.iop.org/1367-2630/7/1/204/fulltext/#nj192710s2
I don't understand why you are allowed to take the step made in Equation (2.9) - i.e. why does putting a prime on the LHS simply mean that you can go ahead and "prime" all of the h in the RHS? If this is allowed, then I can see how the rest of that equality works, no problem.
Why wouldn't it work? I mean, you just change the coordinates x'^{a} = x^{a} + \xi^{a}. h'_{ab} is the metric in the new gauge, so you just define your trace-reversed metric in the new gauge as \bar{h}'_{a b}= h'_{ab} - 1/2 \eta_{a b} h'

tomelwood said:
Secondly, taking a step or two back, where it says substituting "h-bar" into (2.6) "and expanding", how does this simplify down to (2.7)? Because I can see how the terms where both indices are "downstairs" are changed, but what about the h's in the form of a (1,1) tensor? That is one upstairs and one downstairs? I tried applying the Minkowski metric to the (1,1) h, to try and get into "downstairs format" for me to work with, but I was left with some delta's.. Specifically (apologies in advance for appalling Latex):

h^{c}_{a,bc}=\eta^{da}\bar{h}_{ab,bc}-\frac{1}{2}\eta_{ab}\eta^{ad}\bar{h}_{,bc}=\bar{h}^{d}_{b,bc}-\frac{1}{2}\delta\stackrel{d}{b}\bar{h}_{,bc}

and I don't understand how to move on from here?

Any observations would be greatly appreciated.

You are doing something very naughty there...

\partial_b \partial_c h^c_a = \partial_b \partial_c \bar{h}^c_a + \frac{1}{2} \partial_b \partial_c \delta^c_a h = \partial_b \partial_c \bar{h}^c_a + \frac{1}{2} \partial_b \partial_a h, right?
 
Oh of course. Thanks. OK. So now all that section makes sense, the final step is to show that the trace terms cancel out.
I've been trying to find out the intermediate steps going on, and have managed to solve the equation if I can show that:

h_{,ab}=\frac{1}{2}\eta_{ca}h_{,b}^{c}+\frac{1}{2}\eta_{cb}h_{,a}^{c}
where the superscript c's indicate partial differentiation with respect to c as well (I couldn't make the latex work for that bit)

The only problem is I can't do this, as I know you can't raise/lower indices of partials...
Thanks!
 
Remember two things:
1) what's the covariant derivative of a scalar?
2) in perturbation theory, you can drop everything 2nd order. How big is \Gamma^\mu_{\alpha \beta}?
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
Back
Top