Covariant Derivative derivation.

T-chef
Messages
12
Reaction score
0

Homework Statement


Using the Leibniz rule and:
\nabla_{c}X^{a}=\partial_{c}X^a+\Gamma_{bc}^{a}X^b
\nabla_{a}\Phi=\partial\Phi

Show that \nabla_c X_a = \partial_c X_a - \Gamma^{b}_{ac}X_{b}.
The question is from Ray's Introducing Einsteins relativity,

My attempt:
\nabla_c(X^aX_a)=\nabla_c(X^a)X_a+X^a\nabla_c(X_a)
= (\partial_{c}X^a+\Gamma_{bc}^{a}X^b)X_a+X^a\nabla_c(X_a)

From here I'm not sure how to introduce the scaler field phi, or how doing so would help. Cheers for any help!
 
Physics news on Phys.org
You already introduced it!
 
Of course! The left hand side is exactly the scaler field I need. All comes out nicely after that! Thank you sir,
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top