Hi metrictensor,
I promised to get back to this when more wideawake
http://arxiv.org/abs/gr-qc/0205108
Reconcile Planck-scale discreteness and the Lorentz-Fitzgerald contraction
Carlo Rovelli, Simone Speziale
12 pages, 3 figures
Phys.Rev. D67 (2003) 064019
A Planck-scale minimal observable length appears in many approaches to quantum gravity. It is sometimes argued that this minimal length might conflict with Lorentz invariance, because a boosted observer could see the minimal length further Lorentz contracted. We show that this is not the case within loop quantum gravity. In loop quantum gravity the minimal length (more precisely, minimal area) does not appear as a fixed property of geometry, but rather as the minimal (nonzero) eigenvalue of a quantum observable. The boosted observer can see the same observable spectrum, with the same minimal area. What changes continuously in the boost transformation is not the value of the minimal length: it is the probability distribution of seeing one or the other of the discrete eigenvalues of the area. We discuss several difficulties associated with boosts and area measurement in quantum gravity. We compute the transformation of the area operator under a local boost, propose an explicit expression for the generator of local boosts and give the conditions under which its action is unitary."
this article has been cited by 23 other articles
http://arxiv.org/cits/gr-qc/0205108
(if you want to read more viewpoints and discussion)
including for example this one
http://arxiv.org/abs/gr-qc/0405085
About Lorentz invariance in a discrete quantum setting
Etera R. Livine, Daniele Oriti
25 pages
JHEP 0406 (2004) 050
"
A common misconception is that Lorentz invariance is inconsistent with a discrete spacetime structure and a minimal length: under Lorentz contraction, a Planck length ruler would be seen as smaller by a boosted observer. We argue that in the context of quantum gravity, the distance between two points becomes an operator and show through a toy model, inspired by Loop Quantum Gravity, that the notion of a quantum of geometry and of discrete spectra of geometric operators, is not inconsistent with Lorentz invariance. The main feature of the model is that a state of definite length for a given observer turns into a superposition of eigenstates of the length operator when seen by a boosted observer. More generally, we discuss the issue of actually measuring distances taking into account the limitations imposed by quantum gravity considerations and we analyze the notion of distance and the phenomenon of Lorentz contraction in the framework of "deformed (or doubly) special relativity'' (DSR), which tentatively provides an effective description of quantum gravity around a flat background. In order to do this we study the Hilbert space structure of DSR, and study various quantum geometric operators acting on it and analyze their spectral properties. We also discuss the notion of spacetime point in DSR in terms of coherent states. We show how the way Lorentz invariance is preserved in this context is analogous to that in the toy model."
But hey metrictensor! Rovelli's paper is only one side of the discussion!
The other view is that Lorentz symmetry should be mooshed just slightly so that Planck length looks the same to all observers (or words to that effect). that is DSR. this is a major fork in the road for LQG.