Surface gravity calculation, where am I wrong?

hjq1990
Messages
2
Reaction score
0
On Page 245 of book <<space time and geometry: an introduction of general relativity>> by Sean M. Carroll, the author gave the definition surface gravity and gave its property. I tried to do the calculation for several times, only to find the result different. So could you please take a look and tell me where I have make a mistake. Thanks a lot.
Provided:
$\chi^\mu\nabla_\mu\chi^\nu=-\kappa\chi^\nu$ (1)\\
$\nabla(_\mu\chi_\nu)=0$ (2)\\
$\chi_[\mu\nabla_\nu\chi_\sigma]=0$ (3)\\
Prove: $\kappa^2=-1/2(\nabla_\mu \chi_\nu)(\nabla^\mu\chi^\nu)$\\
I calculated it as follows:\\
from (2) and (3),\\
$\chi_\mu\nabla_\nu\chi_\sigma+\chi_\nu\nabla_\sigma\chi_\mu+\chi_\sigma\nabla_\mu\chi_\nu=0$ (4)\\
thus,\\
$\kappa^2\chi^\mu\chi_\mu=(-\chi^\mu\nabla_\mu\chi^\nu)(-\chi^\sigma\nabla_\sigma\chi^\nu)$\\
$=(\chi^\sigma\nabla^\mu\chi^\nu)(\chi_\mu\nabla_\sigma\chi_\nu)$\\
$=(\chi^\sigma\nabla^\mu\chi^\nu)(-\chi_\sigma\nabla_\nu\chi_\mu-\chi_\nu\nabla_\mu\chi_\sigma)$\\
$=(\chi^\sigma\nabla^\mu\chi^\nu)(\chi_\sigma\nabla_\mu\chi_\nu)+(-\chi^\sigma\nabla^\nu\chi^\mu)(\chi_\nu\nabla_\sigma\chi_\mu)$\\
$=\chi^\sigma\chi_\sigma\nabla^\mu\chi^\nu\nabla_\mu\chi_\nu-(\chi^\sigma\nabla_\sigma\chi^\mu)(\chi_\nu\nabla^\nu\chi^\mu)$\\
$=\chi^\sigma\chi_\sigma\nabla^\mu\chi^\nu\nabla_\mu\chi_\nu-\kappa^2\chi^\mu\chi_\mu$\\
thus,\\
$\kappa^2=1/2(\nabla_\mu\chi_\nu)(\nabla^\mu\chi^\nu) \hfil \square$

Sorry for being lazy, but I really hate it of typing the codes to this site again. I wondering why it is not compatible with latex. I hope you could view the picture I uploaded, if you do not want to copy the code into your editor and compile it.

PS: I am a freshman as for Latex, thus if I put any code not proper, please point them out and give me some advice, if possible.
 

Attachments

  • surface gravity calculation.JPG
    surface gravity calculation.JPG
    40.6 KB · Views: 664
Physics news on Phys.org
QUOTE BY hjq1990

On Page 245 of book <<space time and geometry: an introduction of general relativity>> by Sean M. Carroll, the author gave the definition surface gravity and gave its property. I tried to do the calculation for several times, only to find the result different. So could you please take a look and tell me where I have make a mistake. Thanks a lot.
Provided:
\chi^ \mu \nabla_ \mu \chi^ \nu=- \kappa \chi^ \nu \hspace{10 mm} (1)
\hspace{10 mm} \nabla(_ \mu \chi_ \nu)=0 \hspace{10 mm} (2)
\hspace{10 mm} \chi_{[ \mu \nabla_ \nu \chi_ \sigma]}=0 \hspace{10 mm} (3)
Prove: \kappa^2=-1/2( \nabla_ \mu \chi_ \nu)( \nabla^ \mu \chi^ \nu)
I calculated it as follows:
from (2) and (3),
\hspace{10 mm} \chi_ \mu \nabla_ \nu \chi_ \sigma+ \chi_ \nu \nabla_ \sigma \chi_ \mu+ \chi_ \sigma \nabla_ \mu \chi_ \nu=0 \hspace{10 mm} (4)
thus,
\kappa^2 \chi^ \mu \chi_ \mu=(- \chi^ \mu \nabla_ \mu \chi^ \nu)(- \chi^ \sigma \nabla_{ \sigma} \chi^ \nu)
=( \chi^ \sigma \nabla^ \mu \chi^ \nu)( \chi_ \mu \nabla_ \sigma \chi_ \nu)
=( \chi^ \sigma \nabla^ \mu \chi^ \nu)(- \chi_ \sigma \nabla_ \nu \chi_ \mu- \chi_ \nu \nabla_ \mu \chi_ \sigma)
=( \chi^ \sigma \nabla^ \mu \chi^ \nu)( \chi_ \sigma \nabla_ \mu \chi_ \nu)+(- \chi^ \sigma \nabla^ \nu \chi^ \mu)( \chi_ \nu \nabla_ \sigma \chi_ \mu)
= \chi^ \sigma \chi_ \sigma \nabla^ \mu \chi^ \nu \nabla_ \mu \chi_ \nu-( \chi^ \sigma \nabla_ \sigma \chi^ \mu)( \chi_ \nu \nabla^ \nu \chi^ \mu)
= \chi^ \sigma \chi_ \sigma \nabla^ \mu \chi^ \nu \nabla_ \mu \chi_ \nu- \kappa^2 \chi^ \mu \chi_ \mu
thus,

\kappa^2=1/2( \nabla_ \mu \chi_ \nu)( \nabla^ \mu \chi^ \nu) \hspace{100 mm}\square


Sorry for being lazy, but I really hate it of typing the codes to this site again. I wondering why it is not compatible with latex. I hope you could view the picture I uploaded, if you do not want to copy the code into your editor and compile it.

PS: I am a freshman as for Latex, thus if I put any code not proper, please point them out and give me some advice, if possible.

END QUOTE

Hello. Does this look a little closer to what you were trying to post? I basically just replaced the $'s with [/tex] and and added spaces before the symbols so they show properly. You can use &quot;quote&quot; on this post to see what I did.
 
Last edited:
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
Back
Top