Need advice on which math classes to take

AI Thread Summary
The discussion focuses on preparing for tensor calculus in relation to studying general relativity (GR). The individual has already completed Calculus I-III and Differential Equations and is considering additional math courses to strengthen their foundation. Key recommendations emphasize the importance of Linear Algebra and potentially Vector Analysis for computational understanding of tensors, especially in a first GR course. It is noted that while tensor analysis is relevant, the core of GR is more about differential geometry, which will be covered in GR courses. The individual is advised to prioritize Linear Algebra and, if necessary, Vector Analysis, while Abstract Algebra may be less critical for immediate GR studies. Overall, the emphasis is on aligning math coursework with the computational aspects of tensor calculus rather than treating tensor analysis as a standalone subject.
HeLiXe
Messages
439
Reaction score
1
This is a direct spinoff to the thread I started about which class general relativity is offered in. That question was answered and now I would like to align my math classes to prepare for tensor calculus. Here are the classes I am thinking of taking

Linear Algebra
Abstract Algebra I and II
Vector Analysis
Number Theory
Numerical Analysis
Probability and Statistics

I have already taken Calc I-III and Differential Equations. Because of the scheduling of courses at my school, I will probably have to take the most of these after I graduate. My question is, which classes are most essential for tensor analysis, and which of these would you recommend for self study (as they probably would not be a prerequisite for graduate courses)? I plan to go to graduate school for astrophysics and am currently majoring in physics and chemistry. Thanks!
 
Physics news on Phys.org
One usually encounters tensor analysis either in a GR course or a riemannian / smooth manifolds class. Typically you need to know your calc 3 and your LA very well if you want to get started on an introduction that isn't heavy on theory but is more bent towards computation (I'm not sure what your vector analysis class entails but for example at my uni there's an undergrad class called vector and tensor analysis so is it a tensor analysis class for you as well?).
 
I don't think so...from what I have read in the catalog, it covers vector fields, divergence theorem, Greene's theorem, and stokes theorem. There is no clear tensor analysis course at my school. The only course description that even mentions "tensor" is a graduate course on continuum mechanics.
 
Yeah tensor analysis is big in fluid dynamics. Well if the majority if the stuff in the vector analysis class are things you haven't already learned in calc 3 then it would probably help to take it (I'm not sure how theoretical that class gets but if you know the textbook you can probably gauge it from that - the one at my uni uses Geometry of Physics - Frankel). Anyways, if you are right now looking to get used to the computational / classical aspects of it all (basically what you would see in a first GR course) then you need to have calc 3 and LA under your belt but not much else really. Note that if your goal is to eventually get to a good learning of GR then tensor calculus isn't really the major thing to focus on as its own separate entity because most GR books will teach that along the way. It is really differential geometry that forms the core of GR. So yeah put your efforts on LA and, if needed, vector analysis. If you have the time and interest then take Abstract Algebra 1 but for a first GR course you won't see the stuff in that show up much at all in terms of tensor calculus.
 
After a year of thought, I decided to adjust my ratio for applying the US/EU(+UK) schools. I mostly focused on the US schools before, but things are getting complex and I found out that Europe is also a good place to study. I found some institutes that have professors with similar interests. But gaining the information is much harder than US schools (like you have to contact professors in advance etc). For your information, I have B.S. in engineering (low GPA: 3.2/4.0) in Asia - one SCI...
I graduated with a BSc in Physics in 2020. Since there were limited opportunities in my country (mostly teaching), I decided to improve my programming skills and began working in IT, first as a software engineer and later as a quality assurance engineer, where I’ve now spent about 3 years. While this career path has provided financial stability, I’ve realized that my excitement and passion aren’t really there, unlike what I felt when studying or doing research in physics. Working in IT...
Hello, I’m an undergraduate student pursuing degrees in both computer science and physics. I was wondering if anyone here has graduated with these degrees and applied to a physics graduate program. I’m curious about how graduate programs evaluated your applications. In addition, if I’m interested in doing research in quantum fields related to materials or computational physics, what kinds of undergraduate research experiences would be most valuable?

Similar threads

Back
Top