Determining Areas of Triangles in Hexagon ABCDEF

  • Thread starter Thread starter Numeriprimi
  • Start date Start date
  • Tags Tags
    Hexagon Triangles
Numeriprimi
Messages
135
Reaction score
0
I have hexagon ABCDEF (30 cm2) and point M inside.
True: ABM = 3 cm2; BCM = 2 cm2; DEM = 7 cm2 ; FEM = 8cm2

How can I determine area of others two triangles? I know their total area, but how individually?

Thanks very much and if you don't understand, write, I will try to write better.
Poor Czech Numeriprimi
 
Physics news on Phys.org
You exploit the symmetry of the hexagon ... did you sketch it out?
Point M is closest to B and C, closer to B than C - right?

Can you find the length of the line segments radiating from M in terms of the areas you know?
 
How can I exploit symmetry?
And yes, it is right, but but what good is it useful?
I don't understand your third question... What length from M?
 
Simon Bridge said:
You exploit the symmetry of the hexagon ... did you sketch it out?
Point M is closest to B and C, closer to B than C - right?

Can you find the length of the line segments radiating from M in terms of the areas you know?
The problem, as stated, does not suggest that this is a "regular" hexagon and so does not imply any "symmetry".

Numeri Primi, it is easy, as you say, to see that the total area of the two remaining triangles is 30- (3+ 2+ 7+ 8)= 30- 20= 10. But there is NO way to determine the area of the two triangles separately. It is possible to construct many different (non-symmetric) hexagons having the given information but different areas for the last two triangles.
 
Last edited by a moderator:
The problem, as stated, does not suggest that this is a "regular" hexagon and so does not imply any "symmetry".
That's a good point... though the question would seem somewhat unfair if it were not.
 

Similar threads

Back
Top