How to Find the Indefinite Integral for (4x^2+2√x+1)/(2x√x)?

KMcFadden
Messages
28
Reaction score
0

Homework Statement


∫▒〖(4x^2+2√x+1)/(2x√x) dx〗


Homework Equations





The Attempt at a Solution


∫▒〖(4x^2+2√x+1)/(2x√x) dx〗
∫▒((4x^2)/(2x^(3/2) )+(2√x)/(2x^(3/2) )+1/(2x^(3/2) ))dx
2∫▒x^(1/2) dx+∫▒〖x^(-1) dx〗+1/2 ∫▒x^(-3/2) dx
2×2/3 x^(3/2)+ln⁡x+1/2×(-2) x^(-1/2)+C
4/3 x^(3/2)+ln⁡x-x^(-1/2)+C
4/3 √(x^3 )+ln⁡x-1/√x+C
 
Physics news on Phys.org
KMcFadden said:

Homework Statement


∫▒〖(4x^2+2√x+1)/(2x√x) dx〗

Homework Equations



The Attempt at a Solution


∫▒〖(4x^2+2√x+1)/(2x√x) dx〗
∫▒((4x^2)/(2x^(3/2) )+(2√x)/(2x^(3/2) )+1/(2x^(3/2) ))dx
2∫▒x^(1/2) dx+∫▒〖x^(-1) dx〗+1/2 ∫▒x^(-3/2) dx
2×2/3 x^(3/2)+ln⁡x+1/2×(-2) x^(-1/2)+C
4/3 x^(3/2)+ln⁡x-x^(-1/2)+C
4/3 √(x^3 )+ln⁡x-1/√x+C
It looks good. Take the derivative to check it.
 
Thanks
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top