Understanding the Derivation of the Dirac Equation in Cosmology

pleasehelpmeno
Messages
154
Reaction score
0
Hi i am trying to derive the Dirac equation of the form:
[i\gamma^0 \partial_0 + i\frac{1}{a(t)}\gamma.\nabla +i\frac{3}{2}(\frac{\dot{a}}{a})\gamma^0 - (m+h\phi)]\psi where a is the scale factor for expnasion of the universe.


I understand that the matter action is S=\int d^{4}x e [\frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi - V(\phi) + i \bar{\psi}\bar{\gamma}^{\mu}\vec{D}_{\mu}\psi -(m+h\phi)\bar{\psi}\psi)] but i don't understand firstly why there is a vierbein and not a \sqrt{-g} term.

I don't really understand why this is the case D_{\mu}=\frac{1}{4}\bar{\psi}\bar{\gamma}^{\mu} \gamma_{\alpha \beta}\omega^{\alpha \beta}_{\mu} and why the arrow above the D is gone.

And lastly I don't understand why \bar{\gamma}^{i}=\frac{1}{a(t)}\gamma^{i}

I understand that one needs to vary the action and i can do that bit but I don't understand some of these conversions, thx. I would appareciate any help that anyone can offer in tis challenge.
 
Physics news on Phys.org
To deal with spinors in curved spacetimes (or even just curvilinear coordinates) you need to use a set of basis vectors. This is because the gamma matrices that obey {γμ, γν} = 2gμν aren't constant, so we use instead matrices referred to a basis, in which {γa, γb} = 2ηab.

The covariant derivative is Dμ = ∂μ - (1/4)σabωabμ where σab is the usual Dirac matrix, and ωabμ are the Ricci rotation coefficients associated with the vierbein.

I think the only reason there's an arrow over the D is to remind us that it acts on the spinor to its right.
 
yeah thanks, i have a method to work on now.
I know that one can relate the spin connection to the gamma matrices by: \Gamma_{\mu} to \gamma by [\Gamma_{\mu},\gamma^{\nu}] but is this simply a standard commutator relationship or is it something more because wouldn't \Gamma_{1}\gamma^{1} - \gamma^{1}\Gamma_{1} =0 for example?
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top