Non-homogenous differential Equation

sndoyle1
Messages
6
Reaction score
0

Homework Statement


solve:
y""+6y'+9y=e-3x/x3


Homework Equations



y=yc+yp


The Attempt at a Solution



I found yc=C1e-3x+C2xe-3x
and am having difficulties finding yp. I am wondering which method would be the best to determine yp:

- annihilators
- undetermined coefficients
- variation of paramaters.
 
Physics news on Phys.org
Since it is in the form e^{ax}/x^k try using Ae^{-3x}/x
 
Thanks, it worked out. I have a hard time knowing what 'guess' to use for the derivative. How did you know to put it over x instead of x-3? I have a test tomorrow, so I want to make sure that I can do things properly.
 
I usually always try the simplest first. This doesn't pertain to this question, but if Ae^{ax} didn't work I would try Axe^{ax}, and if that didn't work I would try Ax^2e^{ax}. It can be rather tedious for some questions but eventually you start to notice patterns.
 
Is that really a fourth degree equation or is the second '' a typo?

"Undetermined coefficents" works when the right side of the equation is one of the types of solutions you can get as solutions to homogenous differential equations with constant coefficients: exponentials, sine or cosine, and polynomials, as well as combinations of those. That is not the case here. I recommend "variation of parameters".
 
I think he accidentally hit the quotation mark key.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top