Thermodynamics: Change in specific enthelpy

t3rom
Messages
54
Reaction score
0

Homework Statement



What is the change in specific enthalpy if saturated water vapor at 100 bar compresses to a pressure of 150 bar? The temperature is constant.

Homework Equations



None

The Attempt at a Solution



I used this equation to solve the problem: delta h = delta e + p * delta v
I found the value of delta e and delta v from steam tables. The answer I'm getting is 190049 kj/kg which is incorrect. Any help would be greatly appreciated, TIA!
 
Physics news on Phys.org
I got it. Had to lookup values of enthalpy at 100 bar and 150 bar then take the difference of them.
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top