Write the inner product of the state vector in a atom orbital

rishhary
Messages
1
Reaction score
0
Consider 2 atomic orbitals with wave function a: σ(r), b: μ(r) in a diatomic molecules. σ(r) (or μ(r)) is localized around an atom a (or b) and is relevant for the discussion of the molecular orbital. These orbitals are orthogonal and normalised. The creation operators are x, y and vacuum, |0>.

a ) A wave function for the orbital on each atom is represented by the creation operator. Using the bra vector <r| write σ(r), μ(r) in the inner product of the state vectors. b) Let ε^a (or ε^b) be the energy of a: σ(r), b: μ(r) respectively and V = <0|xHy|0> be a real matrix element. Obtain the energy eigen values in this Linear combination of atomic orbitals approach.

These questions are from a sample exam papers of my course and I tried solving them but I am not sure of my answer so I decided to post it here so I can get some feedback and cross-check my solution. Thank you
 
Physics news on Phys.org
rishhary said:
These questions are from a sample exam papers of my course and I tried solving them but I am not sure of my answer so I decided to post it here so I can get some feedback and cross-check my solution. Thank you
Please post your solution here (and use the homework template), otherwise you cannot get feedback on it.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top