Atom Emitting Photon: Energy Conservation

71GA
Messages
208
Reaction score
0
I have come across a problem which is a homework indeed, but i tried to pack this question up so that it is more theoretical.

What i want to know is if i am alowed to write energy conservation for an atom which emitts a photon (when his electron changes energy for a value ##\Delta E##) like this (The atom is kicked back when it emmits an photon):

\begin{align}
E_1 &= E_2\\
E_{ \text{H atom 1}} &= E_{ \text{H atom 2} } + E_\gamma\\
\sqrt{ \!\!\!\!\!\!\!\!\!\!\smash{\underbrace{(E_0 + \Delta E)^2}_{\substack{\text{I am not sure about}\\\text{this part where normaly}\\\text{we write only ${E_0}^2$. Should I}\\\text{put $\Delta E$ somewhere else?}}}}\!\!\!\!\!\!\!\!\!\!\!\! + {p_1}^2c^2} &= \sqrt{ {E_0}^2 + {p_2}^2c^2 } + E_\gamma \longleftarrow \substack{\text{momentum $p_1=0$ and because of}\\\text{the momentum conservation}\\\text{$p_2 = p_\gamma = E_\gamma/c$}}\\
\phantom{1}\\
\phantom{1}\\
\phantom{1}\\
\sqrt{{(E_0 + \Delta E)}^2} &= \sqrt{{E_0}^2 + {E_\gamma}^2} + E_\gamma
\end{align}
 
Last edited:
Physics news on Phys.org
##p_2 c = E_\gamma## requires that the initial atom is at rest in your coordinate system, so you can keep E_1 at the left side (and I think I would not use E_0 at all, as it can be confusing), you don't need that p1 at all.
That is possible, indeed.
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top