Sharon25 said:
After searching this forum for what exactly spin is my inference is that it is a misnomer for an electrons "intrinsic angular momentum"...so some doubts; may be I am being too blunt;
What is the difference between +1/2 and -1/2 spin?
Physically, +1/2 and -1/2 spin correspond to the two possible outcomes of a measurement of a spin 1/2 particle's moment of angular momentum. Take a look at the Stern-Gerlach experiment:
http://en.wikipedia.org/wiki/Stern-Gerlach_Experiment. Mathematically, they correspond to the two orthonormal basis vectors for the Hilbert space in which the spin state of a spin 1/2 particle lives.
Is the electron actually moving(it is has got to be either stationary or moving right?)
A stationary electron has a magnetic moment just like a moving one. An example of an experiment on a stationary spin-1/2 particle would be Electron Paramagnetic Resonance.
http://en.wikipedia.org/wiki/Electron_paramagnetic_resonance . It is usually not helpful to think of the electron's spin magnetic moment as arising from any sort of rotational motion--it's just an intrinsic magnet similar to a bar magnet.
How exactly was this angular momentum calculated?
Since L=IW(OMEGA)
and I=k m r^2 what value of k and r was taken to say that to provide for its angular momentum electron must be moving at a velocity greater than that of light...was all possible values of r explored?(sure it must have been,but what is the maximum possible value of r here)?
At a molecular level, this classical calculation does not apply. For example, electrons in atoms have an orbital angular momentum, but if we were to assume this is due to classical orbital motion of the electron, we find that atoms are not stable (since they would emit dipole radiation, leeching off the kinetic energy of the orbiting electron, leading it to spiral into the nucleus in a very short time.)
So instead of classical mechanics, we apply quantum mechanics. There are actually two ways to attack angular momentum: One is by calculating the wavefunctions of electrons in atoms (this is called the analytical method and yields spherical harmonic solutions), and another is the more abstract algebraic method which uses the properties of quantum mechanical angular momentum operators.
And frankly there seems to be something wrong about saying that something processes an "intrinsic angular momentum"..just imagine saying that a particle has intrinsic momentum while we we can't account for it with its velocity or mass...
If you read through the two methods I mentioned--the analytical method and the algebraic method--you will find a very enlightening point that indicates the fundamental difference between spin and orbital angular momentum. If we start out using the analytical method of solving the schrodinger equation for the electron's wavefunction as a function of space [this wavefunction would include everything there is to know about its position/velocity], we find that wavefunctions are only consistent (i.e. if we move around the nucleus by 2π radians, the wavefunction must return to the original form since we're back at the same point) if moment of angular momentum has integer values of spin: ..., -2, -1, 0, 1, 2, ...
However if we are only looking at the properties of QM angular momentum operators, we are not necessarily dealing with a wavefunction in space. Instead we consider an abstract Hilbert space. Since we are in a more mathematically abstract space, we don't have any reason to say things return to the same value after moving around by 2π radians, so there is no periodicity requirement, and it turns out there are more solutions--the half integers. ..., -2, -3/2, -1, -1/2, 0, 1/2, 1, 3/2, 2, ... If an object has half-integer angular momentum, it must be due to spin, and particles observed with any spin are said to have more "degrees of freedom" which live in a "spin space" separate from the space the wavefunction lives in. So to describe a spin 1/2 particle completely you need two parts: the wavefunction [spatial degrees of freedom] and the spinor [intrinsic degrees of freedom.]
This indicates that spin angular momentum in half-integer values cannot be due to motion through space [the wavefunction]. It is an intrinsic quality of the spinor.