Discrete math : Induction proof

boxz
Messages
1
Reaction score
0
Stuck on the induction step,please help
 

Attachments

  • QQ??20130920165809.jpg
    QQ??20130920165809.jpg
    13.5 KB · Views: 483
  • QQ??20130920165828.jpg
    QQ??20130920165828.jpg
    14.8 KB · Views: 472
Physics news on Phys.org
For ##n+1## you get one extra number. If it is even you can add it to the "even" sets you have for ##n## and you get additional sets. Count them.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top