Algebriac Geometry - Morphisms of Algebraic Sets

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Geometry Sets
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Dummit and Foote (D&F) Section 15.1 on Affine Algebraic Sets.

On page 662 (see attached) D&F define a morphism or polynomial map of algebraic sets as follows:

----------------------------------------------------------------------------------------------

Definition. A map \phi \ : V \rightarrow W is called a morphism (or polynomial map or regular map) of algebraic sets if

there are polynomials {\phi}_1, {\phi}_2, ... , {\phi}_m \in k[x_1, x_2, ... ... x_n] such that

\phi(( a_1, a_2, ... a_n)) = ( {\phi}_1 ( a_1, a_2, ... a_n) , {\phi}_2 ( a_1, a_2, ... a_n), ... ... ... {\phi}_m ( a_1, a_2, ... a_n))

for all ( a_1, a_2, ... a_n) \in V

----------------------------------------------------------------------------------------------


D&F then go on to define a map between the quotient rings k[W] and k[V] as follows: (see attachment page 662)


-------------------------------------------------------------------------------------------------------
Suppose F is a polynomial in k[x_1, x_2, ... ... x_n].

Then F \circ \phi = F({\phi}_1, {\phi}_2, ... , {\phi}_m) is a polynomial in k[x_1, x_2, ... ... x_n]

since {\phi}_1, {\phi}_2, ... , {\phi}_m are polynomials in x_1, x_2, ... ... x_n.

If F \in \mathcal{I}(W), then F \circ \phi (( a_1, a_2, ... a_n)) = 0 for every ( a_1, a_2, ... a_n) \in V

since \phi (( a_1, a_2, ... a_n)) \in W.

Thus F \circ \phi \in \mathcal{I}(V)

It follows that \phi induces a well defined map from the quotient ring k[x_1, x_2, ... ... x_n]/\mathcal{I}(W)

to the quotient ring k[x_1, x_2, ... ... x_n]/\mathcal{I}(V) :

\widetilde{\phi} \ : \ k[W] \rightarrow k[V]

f \rightarrow f \circ \phi

-------------------------------------------------------------------------------------------------------------------

My problem is, how exactly does it follow (and why?) that \phi induces a well defined map from the quotient ring k[x_1, x_2, ... ... x_n]/\mathcal{I}(W) to the quotient ring k[x_1, x_2, ... ... x_n]/\mathcal{I}(V) ?

Can someone (explicitly) show me the logic of this - why exactly does it follow?

Peter
 

Attachments

Physics news on Phys.org
In general: Let ##R## and ##R^\prime## be rings and let ##I## and ##I^\prime## be ideals of the respective rings. Let ##f:R\rightarrow R^\prime## be a ring morphism.

Let ##\pi^\prime:R^\prime\rightarrow R^\prime/I^\prime## be the canonical quotient morphism which sends an element ##y## in ##R^\prime## to its equivalence class ##[y]##. So, we consider the map ##\pi^\prime \circ f## which sends ##x\in R## to ##[f(x)]##.

Now, assume that for all ##x\in I##, we have that ##f(x)\in I^\prime##. This means that ##\pi(f(x)) = 0## for each ##x\in I##. So ##I\subseteq ker(\pi \circ f)##. This implies directly that there is a unique morphism ##F:R/I\rightarrow R^\prime /I^\prime## such that ##F( [x]) = [f(x)]##. Let us prove this. Uniqueness is clear since I have defined ##F## at each point ##R/I## explicitely. To prove existence, assume that ##[x] = [x^\prime]## for some ##x,x^\prime \in R^\prime##. Then ##x-x^\prime \in I##, and thus ##\pi(f(x-x^\prime)) = 0##. Thus ##F([x]) = \pi(f(x)) = \pi(f(x^\prime)) = F([x^\prime])##.
 
  • Like
Likes 1 person
Thanks R136a1! Appreciate your help

Now working through your post carefully

Peter
 
Back
Top