Math Amateur
Gold Member
MHB
- 3,920
- 48
I am reading Dummit and Foote (D&F) Section 15.1 on Affine Algebraic Sets.
On page 662 (see attached) D&F define a morphism or polynomial map of algebraic sets as follows:
----------------------------------------------------------------------------------------------
Definition. A map \phi \ : V \rightarrow W is called a morphism (or polynomial map or regular map) of algebraic sets if
there are polynomials {\phi}_1, {\phi}_2, ... , {\phi}_m \in k[x_1, x_2, ... ... x_n] such that
\phi(( a_1, a_2, ... a_n)) = ( {\phi}_1 ( a_1, a_2, ... a_n) , {\phi}_2 ( a_1, a_2, ... a_n), ... ... ... {\phi}_m ( a_1, a_2, ... a_n))
for all ( a_1, a_2, ... a_n) \in V
----------------------------------------------------------------------------------------------
D&F then go on to define a map between the quotient rings k[W] and k[V] as follows: (see attachment page 662)
-------------------------------------------------------------------------------------------------------
Suppose F is a polynomial in k[x_1, x_2, ... ... x_n].
Then F \circ \phi = F({\phi}_1, {\phi}_2, ... , {\phi}_m) is a polynomial in k[x_1, x_2, ... ... x_n]
since {\phi}_1, {\phi}_2, ... , {\phi}_m are polynomials in x_1, x_2, ... ... x_n.
If F \in \mathcal{I}(W), then F \circ \phi (( a_1, a_2, ... a_n)) = 0 for every ( a_1, a_2, ... a_n) \in V
since \phi (( a_1, a_2, ... a_n)) \in W.
Thus F \circ \phi \in \mathcal{I}(V)
It follows that \phi induces a well defined map from the quotient ring k[x_1, x_2, ... ... x_n]/\mathcal{I}(W)
to the quotient ring k[x_1, x_2, ... ... x_n]/\mathcal{I}(V) :
\widetilde{\phi} \ : \ k[W] \rightarrow k[V]
f \rightarrow f \circ \phi
-------------------------------------------------------------------------------------------------------------------
My problem is, how exactly does it follow (and why?) that \phi induces a well defined map from the quotient ring k[x_1, x_2, ... ... x_n]/\mathcal{I}(W) to the quotient ring k[x_1, x_2, ... ... x_n]/\mathcal{I}(V) ?
Can someone (explicitly) show me the logic of this - why exactly does it follow?
Peter
On page 662 (see attached) D&F define a morphism or polynomial map of algebraic sets as follows:
----------------------------------------------------------------------------------------------
Definition. A map \phi \ : V \rightarrow W is called a morphism (or polynomial map or regular map) of algebraic sets if
there are polynomials {\phi}_1, {\phi}_2, ... , {\phi}_m \in k[x_1, x_2, ... ... x_n] such that
\phi(( a_1, a_2, ... a_n)) = ( {\phi}_1 ( a_1, a_2, ... a_n) , {\phi}_2 ( a_1, a_2, ... a_n), ... ... ... {\phi}_m ( a_1, a_2, ... a_n))
for all ( a_1, a_2, ... a_n) \in V
----------------------------------------------------------------------------------------------
D&F then go on to define a map between the quotient rings k[W] and k[V] as follows: (see attachment page 662)
-------------------------------------------------------------------------------------------------------
Suppose F is a polynomial in k[x_1, x_2, ... ... x_n].
Then F \circ \phi = F({\phi}_1, {\phi}_2, ... , {\phi}_m) is a polynomial in k[x_1, x_2, ... ... x_n]
since {\phi}_1, {\phi}_2, ... , {\phi}_m are polynomials in x_1, x_2, ... ... x_n.
If F \in \mathcal{I}(W), then F \circ \phi (( a_1, a_2, ... a_n)) = 0 for every ( a_1, a_2, ... a_n) \in V
since \phi (( a_1, a_2, ... a_n)) \in W.
Thus F \circ \phi \in \mathcal{I}(V)
It follows that \phi induces a well defined map from the quotient ring k[x_1, x_2, ... ... x_n]/\mathcal{I}(W)
to the quotient ring k[x_1, x_2, ... ... x_n]/\mathcal{I}(V) :
\widetilde{\phi} \ : \ k[W] \rightarrow k[V]
f \rightarrow f \circ \phi
-------------------------------------------------------------------------------------------------------------------
My problem is, how exactly does it follow (and why?) that \phi induces a well defined map from the quotient ring k[x_1, x_2, ... ... x_n]/\mathcal{I}(W) to the quotient ring k[x_1, x_2, ... ... x_n]/\mathcal{I}(V) ?
Can someone (explicitly) show me the logic of this - why exactly does it follow?
Peter