Integrating Along C: Solving ∫ tan(z/2)/(z+π/2)(z-π/2)² dz

  • Thread starter Thread starter jiho.j
  • Start date Start date
  • Tags Tags
    Integrating
jiho.j
Messages
3
Reaction score
0

Homework Statement



∫\frac{tan(\frac{z}{2})}{(z+\frac{\pi}{2})(z-\frac{\pi}{2})^{2}} dz

integration along C: abs(z) = 4

(along the circle of radius is 4)

Homework Equations



Cauchy Integral Formula

The Attempt at a Solution



I tried to set g(z) that is analytic inside C but I cannt set it.

Do I have to use Laurent seires or residue or something?
 
Physics news on Phys.org
jiho.j said:
I tried to set g(z) that is analytic inside C but I cannt set it.

Do I have to use Laurent seires or residue or something?
Yes, nothing comes to mind quickly for you to use the Cauchy Integral formula. It should be fine using residues though.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top