To what depth does the bullet penetrate the block in this case?

  • Thread starter Thread starter Pseudo Statistic
  • Start date Start date
  • Tags Tags
    Block Bullet Depth
AI Thread Summary
The discussion revolves around solving physics problems involving conservation of energy and momentum. Participants seek guidance on how to approach specific scenarios, such as calculating the speed of Gayle and her brother on a sled after descending a hill and determining the penetration depth of a bullet in different conditions. Key concepts include treating the brother's jump as an inelastic collision and understanding that penetration depth is proportional to the kinetic energy lost during the collision. The conversation emphasizes the importance of applying energy equations correctly to model the initial conditions. Overall, the thread provides insights into problem-solving techniques in physics.
Pseudo Statistic
Messages
391
Reaction score
6
Hi.
I was trying to solve the following problems, but I just don't understand what principles/laws/concepts I'm supposed to be using.
I hope someone can give me a hint as to where I should start.
Thanks a lot for any replies.

31) Gayle runs at a speed of 4m/s and dives on a sled, initially at rest on the top of a frictionless snow-covered hill. After she has descended a vertical distance of 5m, her brother, who is initially at rest, hops on her back and together they continue down the hill. What is their speed at the bottom of the hill if the total vertical drop is 15m? Gayle's mass is 50kg, the sled has a mass of 5kg, and her brother has a mass of 30kg.

39) A 7g bullet, when fired from a gun into a 1kg block of wood held in a vise, penetrates the block to a depth of 8cm. This block of wood is placed on a frictionless horizontal surface, and a second 7g bullet is fired from the gun into the block. To what depth does the bullet penetrate the block in this case?

48) Consider a frictionless track. A block of mass m1 = 5kg is released from A, 5m in vertical height. It makes a head-on elastic collision at B, at our reference level, with a block of mass m2 = 10kg that is initially at rest. Calculate the maximum height to which m1 rises after the collision.
 
Physics news on Phys.org
Pseudo Statistic said:
31) Gayle runs at a speed of 4m/s and dives on a sled, initially at rest on the top of a frictionless snow-covered hill. After she has descended a vertical distance of 5m, her brother, who is initially at rest, hops on her back and together they continue down the hill. What is their speed at the bottom of the hill if the total vertical drop is 15m? Gayle's mass is 50kg, the sled has a mass of 5kg, and her brother has a mass of 30kg.
You'll need a combination of conservation of energy and conservation of momentum to solve this one. (Hint: Treat the brother jumping on the sled as an inelastic collision.)

39) A 7g bullet, when fired from a gun into a 1kg block of wood held in a vise, penetrates the block to a depth of 8cm. This block of wood is placed on a frictionless horizontal surface, and a second 7g bullet is fired from the gun into the block. To what depth does the bullet penetrate the block in this case?
Assume that the depth of the penetration is proportional to the amount of KE lost in the collision of bullet with block. When the block is free to move, treat the collision as a perfectly inelastic one and calculate the loss of KE.

48) Consider a frictionless track. A block of mass m1 = 5kg is released from A, 5m in vertical height. It makes a head-on elastic collision at B, at our reference level, with a block of mass m2 = 10kg that is initially at rest. Calculate the maximum height to which m1 rises after the collision.
Again, a combination of conservation of energy and conservation of momentum is needed. Hint: Calculate how much KE m1 has after its collision.
 
Doc Al said:
You'll need a combination of conservation of energy and conservation of momentum to solve this one. (Hint: Treat the brother jumping on the sled as an inelastic collision.)
One question though, how do I model what's given to me initially in terms of energy equations? (The 4m/s and the 5m) Is it 0.5mv^2 + mgh = 0.5mv2^2 where h is 5m, v on the left side is 4m/s and v2 on the right side is unknown?

In 39, how would I proceed to calculating depth afterwards?
Thanks.
 
Pseudo Statistic said:
One question though, how do I model what's given to me initially in terms of energy equations? (The 4m/s and the 5m) Is it 0.5mv^2 + mgh = 0.5mv2^2 where h is 5m, v on the left side is 4m/s and v2 on the right side is unknown?
Exactly. Use that to find Gayle's speed just before her brother jumps on the sled.

In 39, how would I proceed to calculating depth afterwards?
Start by figuring out how much KE was required to produce the 8 cm penetration. Then, when you find how much KE was used up in the second case, you can tell how deep the bullet must have penetrated.
 
Doc Al said:
Exactly. Use that to find Gayle's speed just before her brother jumps on the sled.


Start by figuring out how much KE was required to produce the 8 cm penetration. Then, when you find how much KE was used up in the second case, you can tell how deep the bullet must have penetrated.
Thanks loads for the help, now I can solve these problems. :)
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top