Prove the Contraction Mapping Theorem.
Let ##(X,d)## be a complete metric space and ##g : X \rightarrow X## be a map such that ##\forall x,y \in X, d(g(x), g(y)) \le \lambda d(x,y)## for some ##0<\lambda < 1##.Then ##g## has a unique fixed point ##x^* \in X ##, and it attracts everything, i.e...