Sequences Definition and 576 Threads
-
P
Solving the Limit of a Sequence: 5n^2/(n^2+2)
1. Finding the limit of the sequence: { an } = 5n^(2) / (n^(2) + 2) Homework Equations 3. what i did was : lim as (n -> Infinity) of function [5n^(2) / (n^(2) + 2)] Then factored out the constant: 5{lim as (n -> Infinity) of function [n^(2) / (n^(2) + 2)]}...- physics=world
- Thread
- Sequences
- Replies: 8
- Forum: Calculus and Beyond Homework Help
-
G
Can You Find a Counterexample to the Recursive Lucas and Fibonacci Relationship?
Hi I am playing around with recursive definitions of Lucas and Fibonacci sequences: I came across a relationship L0 + L1 + L2 + L3 ... Ln = sum(i = 0, n) Li = Ln+2 -1; Sorry for the horrible notation, but could anyone provide a counter example using an inductive approach? I get the...- ghostskwid
- Thread
- Sequences
- Replies: 1
- Forum: Set Theory, Logic, Probability, Statistics
-
Convergence of Sequences in [0,1]
Homework Statement Determine the convergence, both pointwise and uniform on [0,1] for the following sequences : (i) ##s_n(x) = n^2x^2(1 - cos(\frac{1}{nx})), x≠0; s_n(0) = 0## (ii) ##s_n(x) = \frac{nx}{x+n}## (iii) ##s_n(x) = nsin(\frac{x}{n})## Homework Equations ##s_n(x) →...- STEMucator
- Thread
- Convergence Sequences
- Replies: 31
- Forum: Calculus and Beyond Homework Help
-
M
Sequences and Series exercises text
Hello, In Calculus 2, sequences and series are introduced and do I have to say that most of the examples are trivial and even the exercises are either trivial or those that require experience. I hope someone can suggest a book where one can learn solving not-so-obvious series problems that...- medwatt
- Thread
- Exercises Sequences Sequences and series Series Text
- Replies: 1
- Forum: Science and Math Textbooks
-
V
General Formula for Finding Sum of Complex Sequence | Homework Help"
Homework Statement what is the general formula for the sequence (1/1*3+1/3*6+1/6*10+1/10*15...) Homework Equations i used the equation n/mn+1 but am not able to use it for this sequence The Attempt at a Solution I found the sequence of the denominators which is (1/2)n^2+(1/2)n...- vishnu manoj
- Thread
- Sequences
- Replies: 9
- Forum: Precalculus Mathematics Homework Help
-
B
Cardinality of infinite sequences of real numbers
I have to prove that the cardinality of the set of infinite sequences of real numbers is equal to the cardinality of the set of real numbers. So: A := |\mathbb{R}^\mathbb{N}|=|\mathbb{R}| =: B My plan was to define 2 injective maps, 1 from A to B, and 1 from B to A. B <= A is trivial, just...- Berrius
- Thread
- Cardinality Infinite Numbers Real numbers Sequences
- Replies: 12
- Forum: Set Theory, Logic, Probability, Statistics
-
C
MHB Converging Subsequences: Finding a Sequence for All Integers
I'm trying to find a sequence that has subsequences that converge to every integer. The question before that was the same but just for the positive integers, for which i gave {1,1,2,1,2,3...} but I'm struggling to include the negatives. Thanks- Carla1985
- Thread
- Sequences
- Replies: 2
- Forum: Topology and Analysis
-
Find # Sequences for Increasing Sequence Problem
Homework Statement For an increasing sequence of numbers, how many other sequences could this be the average sequence of. Homework Equations Where the average sequence, a[i] = 0.5( s[i] + s[i+1] ) The Attempt at a Solution If there's n terms in the original sequence. The number of...- trollcast
- Thread
- Sequences
- Replies: 6
- Forum: Precalculus Mathematics Homework Help
-
P
Infinite sequences containing every possible subsequence
Hi, True or False: Every infinite sequence of natural numbers, who's terms are randomly ordered, must contain every possible subsequence of any length, including infinity. For example, does the infinite and random sequence \small M of natural numbers require that the subsequence {59,1,6}... -
L
Significant Figures in Long Sequences of Calculation
After losing marks in an exam due to significant figures, I have decided to clear up all my doubts about this concept. But since my teacher hasn't been very helpful, I've decided to post my question here. I understand the rules for significant figures in both single-step...- Lightfuzz
- Thread
- Calculation Sequences Significant figures
- Replies: 5
- Forum: General Math
-
V
How Can You Solve the Problem of P1Q1 + P2Q2 + ... in Binomial Expansions?
Homework Statement If P r=(n-r)(n-r+1)(n-r+2)...(n-r+p-1) Qr= r(r+1)(r+2)...(r+q-1) Find P1Q1+P2Q2+... +Pn-1Qn-1 Homework Equations The Attempt at a Solution I tried to bring the general term in...- Vineeth T
- Thread
- Sequences Sequences and series Series
- Replies: 3
- Forum: Precalculus Mathematics Homework Help
-
A
Limits of Sequences: 8.4 |s_n||t_n| < \frac{\epsilon}{M}
In this link: http://people.ischool.berkeley.edu/~johnsonb/Welcome_files/104/104hw3sum06.pdf For number 8.4... Why don't we just say... |s_n||t_n| < \frac{\epsilon}{M} M = \epsilon? Thanks in advance- Artusartos
- Thread
- Limits Sequences
- Replies: 5
- Forum: Calculus and Beyond Homework Help
-
C
Infinite sequences and series help
Hi I don't understand the logic in the picture i added. They say that "that sum of the series = the limit of the sequence" The limit is 2/3 BUT the sum, Ʃ, must be 2*1/(3*1+5) + (2*2/(2*3+5) + 2*3/(2*3+5) ...+ Which is obviously much larger than 2/3 if all the terms are added together?? it's...- christian0710
- Thread
- Infinite Sequences Sequences and series Series
- Replies: 33
- Forum: Calculus and Beyond Homework Help
-
C
Help Needed: Solving Sequences with Standard Limits Equations
Homework Statement I'm having trouble with these here.. it's been a while since I've done sequences and I can't seem to make this work with Standard Limits equations. Clearly the answer given by Wolfram solver is there after the = but i'd like to know the reasoning behind it. Anyone that...- chief10
- Thread
- Limits Sequences Standard
- Replies: 14
- Forum: Calculus and Beyond Homework Help
-
U
What is the Relationship Between Logarithms and Progressions in Mathematics?
Homework Statement Read this passage and then answer the questions that follow We know that, if a_1,a_2,...,a_n are in Harmonic Progression, then \frac{1}{a_1},\frac{1}{a_2}...,\frac{1}{a_n}, are in Arithmetic Progression and vice versa. If a_1,a_2,...,a_n are in Arithmetic Progression with...- utkarshakash
- Thread
- Sequences Sequences and series Series
- Replies: 5
- Forum: Precalculus Mathematics Homework Help
-
N
Sum of Sequence: Find the Solution | Homework Help
Homework Statement Find the sum of the sequence: 2, -2/3, 2/9, -2/27, 2/81, . . . Homework Equations The Attempt at a Solution I can see that the number is multiplied by -1/3, but I'm unsure of how to find the sum. Any pointers?- nicnicman
- Thread
- Sequences Sum
- Replies: 11
- Forum: Calculus and Beyond Homework Help
-
C
MHB Graeme's YAnswers Question: The effect of changing values in sequences?
The effect of changing values in sequences?? I have been given a maths assignment and have been given equations \(u_{n+1}=2u_{n}+2\) and asked what is the effect if the value \(u_{0}\) is changed? I used multiple values both positive and negative and have only noticed taht when it is a high...- CaptainBlack
- Thread
- Sequences
- Replies: 2
- Forum: General Math
-
F
Sequences and existence of limit 2
Homework Statement Let [SIZE="3"]an be a bounded sequence and [SIZE="3"]bn such that the limit [SIZE="3"]bn as n→∞ is b and 0<[SIZE="3"]bn ≤ 1/2 ([SIZE="3"]bn-1) Prove that if: [SIZE="3"]an+1 ≥ [SIZE="3"]an - [SIZE="3"]bn, then lim [SIZE="3"]an n→∞ exists. Homework...- Felafel
- Thread
- Existence Limit Sequences
- Replies: 1
- Forum: Calculus and Beyond Homework Help
-
F
Sequences and existence of limit
Homework Statement Let [SIZE="3"]an be a bounded sequence and [SIZE="3"]bn such that the limit [SIZE="3"]bn as n→∞ is b and 0<[SIZE="3"]bn ≤ 1/2 ([SIZE="3"]bn-1) Prove that if: [SIZE="3"]an+1 ≥ [SIZE="3"]an - [SIZE="3"]bn, then lim [SIZE="3"]an n→∞...- Felafel
- Thread
- Existence Limit Sequences
- Replies: 3
- Forum: Calculus and Beyond Homework Help
-
E
Sequences of periodic functions converging to their average value
Homework Statement Let f be a 2π-periodic function (can be any periodic really, not only 2π), and let g be a smooth function. Then lim_{n\rightarrow∞}\int^{B}_{A} f(nx)g(x) converges to \frac{1}{2π}\int^{2π}_{0}f(x) The Attempt at a Solution So far, I've come up with somewhat of...- Elysian
- Thread
- Average Average value Converging Functions Periodic Periodic functions Sequences Value
- Replies: 2
- Forum: Calculus and Beyond Homework Help
-
S
Cauchy Sequences and Convergence
Homework Statement Prove the following theorem, originally due to Cauchy. Suppose that (a_{n})\rightarrow a. Then the sequence (b_{n}) defined by b_{n}=\frac{(a_{1}+a_{2}+...+a_{n})}{n} is convergent and (b_{n})\rightarrow a. Homework Equations A sequence (a_{n}) has the Cauchy property...- Seth|MMORSE
- Thread
- Analysis Cauchy Cauchy sequences Sequences
- Replies: 41
- Forum: Calculus and Beyond Homework Help
-
B
Can Convergent Sequences with Different Limits Have Infinite Intersections?
Let x_n and y_n be two convergent sequences with different limits. Show that the set {x_n : n€N} n {y_n : n€N} is finite. Attempt: by definition, for each £>0 there exists an N such that |x_n - x|<£ and similarly |y_n - y|<£ holds for every n with n>N. Take £=(x-y)/3 and assume that x_n and...- bedi
- Thread
- Convergent Sequences
- Replies: 2
- Forum: Calculus and Beyond Homework Help
-
O
MHB Comparing the sup of two sequences
Hello everyone! Let $a_n$ and $b_n$ be two sequences such that $a_n \leq b_n$ for all $n$. Let $A_n = \sup \{a_m \; | \; m \geq n\}$ and $B_n = \sup \{b_m \; | \; m \geq n\}$. I want to prove that $A_n\leq B_n$. I attempted a proof by contradiction: Assume $A_n > B_n$ for some $n$. If $A_n =...- OhMyMarkov
- Thread
- Sequences
- Replies: 2
- Forum: Topology and Analysis
-
C
MHB Finding a Ratio for Linear Recurrence Sequences
I have a linear recurrence sequence and am having a problem understanding what to do when the ratio does not seem to be the same between each of the terms, so Terms; 4, 1.4, 2.44, 2.024... (n = 1,2,3...) How do I find a the ratio of these terms, and if there is none, please advise how I...- Casio1
- Thread
- Linear Ratio Recurrence Sequences
- Replies: 5
- Forum: General Math
-
B
Limits of sequences as x heads to infinity
cn= (4n)/(n+4n^(1/n)) When i set it up i think i should use l'hopital but I am confused what to do with the 4n^(1/n) term. an=(7^(2n))/(n!) I know this is a geometric sequence and top and bottom increase initially then tend to 0, but I am lost on how to show the work. should i expand...- BigJon
- Thread
- Infinity Limits Sequences
- Replies: 9
- Forum: Calculus and Beyond Homework Help
-
D
Apostol Calculus Vol1 10.4.29 Sequences
Homework Statement Assume that \{ a_n\}\rightarrow 0 . Use the definition of limit to prove that \{ a_n^2\} \rightarrow 0. Homework Equations Definition of limit. For all ε>0 there exists N s.t. n>N implies |a_n - L|<ε. The Attempt at a Solution I know why this is true... if the sequence...- dustbin
- Thread
- Apostol Calculus Sequences
- Replies: 9
- Forum: Calculus and Beyond Homework Help
-
K
Using the Squeeze Theorem to Prove Convergence of a Sequence
Homework Statement I have to proof that the sequence (2^n +n^2)/(3^n + 5n^4) converges en calculate its limit using the sqeeuze theorem. Homework Equations (2^n +n^2)/(3^n + 5n^4) http://www.proofwiki.org/wiki/Squeeze_Theorem#Sequences Theorem 1: Let p\in2N en x\inR with |x|< 1. Then the...- kasperrepsak
- Thread
- Sequences Theorem
- Replies: 5
- Forum: Calculus and Beyond Homework Help
-
S
Cauchy sequences is my proof correct?
Homework Statement Let (xn)n\inℕ and (yn)n\inℕ be Cauchy sequences of real numbers. Show, without using the Cauchy Criterion, that if zn=xn+yn, then (zn)n\inℕ is a Cauchy sequence of real numbers. Homework Equations The Attempt at a Solution Here's my attempt at a proof: Let...- SMA_01
- Thread
- Cauchy Cauchy sequences Proof Sequences
- Replies: 1
- Forum: Calculus and Beyond Homework Help
-
D
Epsilon proof and recursive sequences
Hi, I am wondering how one would go about an ε, N proof for a recursively defined sequence. Can anyone direct me to some reading or would like to provide insights of their own? This isn't for a homework problem... just general curiosity which I could not satisfy via search! Thank you.- dustbin
- Thread
- Epsilon Proof Sequences
- Replies: 4
- Forum: Topology and Analysis
-
M
Prove: Cauchy sequences are converging sequences
Homework Statement I want to prove that if a sequence a[n] is cauchy then a[n] is a converging sequence Homework Equations What I know is: a[n] is bounded any subsequence is bounded there exists a monotone subsequence all monotone bounded sequences converge there exists a...- Mathematicize
- Thread
- Cauchy Cauchy sequences Converging Sequences
- Replies: 1
- Forum: Calculus and Beyond Homework Help
-
D
MHB Proving Schwarz's & Triangle Inequalities for Infinite Sequences
I am not getting anywhere with this problem. Prove the Schwarz's and the triangle inequalities for infinite sequences: If $$ \sum_{n = -\infty}^{\infty}|a_n|^2 < \infty\quad\text{and}\quad \sum_{n = -\infty}^{\infty}|b_n|^2 < \infty $$ then $\displaystyle\left(\sum_{n = -\infty}^{\infty}|a_n +...- Dustinsfl
- Thread
- Inequalities Infinite Sequences Triangle
- Replies: 1
- Forum: Topology and Analysis
-
S
Creating convergent sequences in Banach spaces
Sorry for the rather vague title! Homework Statement Given: Two Banach spaces A and B, and a linear map T: A\rightarrow B The sequences (x^n_i) in A. For each fixed n, (x^n_i) \rightarrow 0 for i \rightarrow \infty. The sequences (Tx^n_i) in B. For each fixed n, (Tx^n_i) \rightarrow y_n...- ScroogeMcDuck
- Thread
- Banach Convergent Sequences
- Replies: 1
- Forum: Calculus and Beyond Homework Help
-
F
Proof of "Every Cauchy Sequence is Bounded
I read the proof of the proposition "every cauchy sequence in a metric spaces is bounded" from http://www.proofwiki.org/wiki/Every_Cauchy_Sequence_is_Bounded I don't understand that how we can take m=N_{1} while m>N_{1} ? In fact i mean that in a metric space (A,d) can we say that...- fderingoz
- Thread
- Cauchy Cauchy sequences Sequences
- Replies: 3
- Forum: Topology and Analysis
-
G
Convergent sequences in Cartesian product of vector spaces
If A and B are vector spaces over ℝ or ℂ show that a sequence (a_n, b_n) in A×B converges to (a,b) in A×B only if a_n converges to a in A and b_n converges to b in B as n tends to infinity. To me this statement sounds pretty intuitive but I have been having trouble actually proving it...- Greger
- Thread
- Cartesian Convergent Product Sequences Vector Vector spaces
- Replies: 9
- Forum: Calculus and Beyond Homework Help
-
B
Solving Limits of Sequences: (-1)^n \frac{n}{n + 1}
Homework Statement [SIZE="3"]\stackrel{lim}{n\rightarrow \infty} (-1)^n \frac{n}{n + 1} Homework Equations The Attempt at a Solution The answer is that the limit oscillates between -1 and 1, but I was wondering if there was an analytic was of showing this.- Bashyboy
- Thread
- Limits Sequences
- Replies: 3
- Forum: Calculus and Beyond Homework Help
-
B
Solving Sequences & Series: Limits & Sums
Hello, I am curious to know that if we take some seqence, a_n, and take the limit as the the terms of the sequence goes to infinity, will the sequence head towards the same value that the the sum of the infinite amount of terms added together? (I hope I worded that properly...)- Bashyboy
- Thread
- Sequences Sequences and series Series
- Replies: 3
- Forum: Topology and Analysis
-
M
Explaining the Proof for Divergence of a Given Sequence
Homework Statement Prove that the given sequence diverges to infinity. {an} = (-n^4+n^3+n)/(2n+7) Homework Equations Diverges definition The Attempt at a Solution So far I have: Let M>0 and let N= something. I'm having a hard time figuring out what N should equal for the...- MathSquareRoo
- Thread
- Analysis Divergent Sequences
- Replies: 12
- Forum: Calculus and Beyond Homework Help
-
M
Limit of n^2/n! and Using Limit Properties for Advanced Calculus Sequences
Homework Statement Determine whether the given limit exists and find their values. Give clear explanations using limit properties. Homework Equations lim n--->∞ (n^2)/n! The Attempt at a Solution I know that the limit is 0, but I don't know how to show it in detailed steps...- MathSquareRoo
- Thread
- advanced Advanced calculus Calculus Sequences
- Replies: 8
- Forum: Calculus and Beyond Homework Help
-
L
Solve Series Sequences: Find Constant Term
can anyone show me how to do this question ? thanks ... express (1+x^2)/((1+x)(1+2x)) in partial fraction. (this step i know the solution ) hence,find the constant term in the expansion if (1+x^2)/(-3x(1+x)(1+2x)) in ascending power of x .( then this one don't know ,please help me ) thanks ...- lovelife
- Thread
- Sequences Series
- Replies: 9
- Forum: Precalculus Mathematics Homework Help
-
O
Metric Spaces of Bounded Sequences
I was attempting to find a counterexample to the problem below. I think I may have, but was ultimately left with more questions than answers. Consider the space, L, of all bounded sequences with the metric \rho_1 \displaystyle \rho_1(x,y)=\sum\limits_{t=1}^{\infty}2^{-t}|x_t-y_t| Show that a...- octane90
- Thread
- Bounded Metric Sequences
- Replies: 3
- Forum: Calculus and Beyond Homework Help
-
L
How Do You Derive the General Formula for Given Recursive Sequences?
Hi guys, I'm doing some exercises in which given a recursive sequence and its first term, I have to find the general formula/term. I am stuck in two and I would like some help. Thanks in advance. Now, the sequences: 1) a1=1, an+1= an + ((-1)^(n+1))n^2 So, the first terms are: a2=2...- lohengrin
- Thread
- Formula General Sequences
- Replies: 1
- Forum: Calculus and Beyond Homework Help
-
J
Calculators Finding sequences on the TI-89 Titanium Calculator?
Can someone guide me toward using my TI-89 Titanium calculator for sequences? I would like to be able to PUT IN a sequence of numbers and have it GIVE ME the formula. Not vice versa please. Thanks.- jonathan1
- Thread
- Calculator Sequences Ti-89 Titanium
- Replies: 3
- Forum: Computing and Technology
-
S
How Can I Deepen My Understanding of Infinite Series and Sequences?
Hello. Having already learned about infinite series and sequences in my calculus class, I'm quite interested in them and especially in learning more about them. If any of you have in mind any good books on the subject which you can recommend to me, it will be very much appreciated...- swill777
- Thread
- Infinite Infinite series Sequences Series
- Replies: 1
- Forum: Science and Math Textbooks
-
M
Looking for Properties of Low Discrepancy Sequences.
Def: A low discrepancy sequence is a uniformly distributed sequence with minimal discrepancy, O(logN/N). Question: Let <x> denote the fractal part of an irrational number x. Let (<x_n>) be an arbitrary low discrepancy sequence. Is it always true that : \lim_{n \to +\infty}|<x_n - x_{n-1}> -...- mehr1methanol
- Thread
- Properties Sequences
- Replies: 3
- Forum: Linear and Abstract Algebra
-
L
What Is the Value of 'a' in the Infinite Geometric Series?
Sequences and series help... [b]1. Homework Statement 3+3a+3a^2+...∞ is = to 45/8 where a>0,then a is...? [b]3. The Attempt at a Solution since it is a g.p so using S=(a(rn-1))/(r-1) for r>1 ive all the values except for "n"..can someone help...:/- lionel messi.
- Thread
- Sequences Sequences and series Series
- Replies: 3
- Forum: Precalculus Mathematics Homework Help
-
L
Infinite sequences and series - conv or div - sigma(e^(1/n)/n)
Homework Statement Determine whether the series converges or diverges Sum from n=1 to infinity ((e^(1/n))/n) Homework Equations I am trying to use the limit comparison test to prove it. The Attempt at a Solution an = (e^(1/n))/n bn = e/n an/bn = e^(1/n)/e lim n->...- learningcalc
- Thread
- Infinite Sequences Sequences and series Series
- Replies: 8
- Forum: Calculus and Beyond Homework Help
-
A
Total number of possible n-state sequences
Hi everyone, I'm doing an investigation of markov properties and in an example I have made the following transition matrix: http://img152.imageshack.us/img152/1584/matrixki.png If all the probabilities were above zero, finding the total number of possible 4-state sequences (i.e. ACBA, BACB...- AryanK
- Thread
- Sequences
- Replies: 12
- Forum: Set Theory, Logic, Probability, Statistics
-
M
Converging sequences (different problem - can you check our thought process?))
Homework Statement Suppose that a mathematically inclined child plays with a basket containing an infinite subset of integers (with some repetitions). If an integer k is present in the basket then there are initially |k| copies of it. The child pulls out the integers from the basket at...- mathscott123
- Thread
- Converging Process Sequences
- Replies: 2
- Forum: Calculus and Beyond Homework Help
-
G
Problem with convergent sequences
Hi, I have the following problem and have done the first two questions, but I don't know how to solve the last two. Thanks for any help you can give me! Homework Statement Let a_{n}\rightarrow a, b_{n}\rightarrow b be convergent sequences in \Re. Prove, or give a counterexample to, the...- gilabert1985
- Thread
- Convergent Sequences
- Replies: 4
- Forum: Calculus and Beyond Homework Help
-
T
Geometric Sequences: Find 1st Term Exceeding 500
Homework Statement Find the first term in this geometric sequence that exceeds 500. 2, 4, 8, 16, ... Homework Equations Un = arn-1 The Attempt at a Solution a = 2, r = 2 Un = 2 x 2n-1 > 500 2 x (2n)(2-1) > 500 log22 x log22n + log22-1 > log2500 1 x n + (-1) > log2500 n - 1 >...- thornluke
- Thread
- Geometric Sequences
- Replies: 4
- Forum: Precalculus Mathematics Homework Help