Help About charge conjugation of Dirac spinor

snooper007
Messages
33
Reaction score
1
The following formula appears in P J Mulders's lecture notes
http://www.nat.vu.nl/~mulders/QFT-0E.pdf

{\cal C}~b(k,\lambda)~{\cal C}^{-1}~=~d(k,{\bar \lambda}) (8.18)

where {\cal C} is charge conjugation operator.
\lambda is helicity.
I don't know why there is {\bar {\lambda}} on the right side,
as is well known that charge conjugation can not change helicity, spin, and momentum.

Thanks
 
Last edited by a moderator:
Physics news on Phys.org
The phases used to define negative energy or anti-particle spinors are often author dependent -- for example, the C matrix is diagonal in Weinberg's book, and off diagonal in Gross's text. Gross uses a different convention for defining antiparticle spinors than do Bjorken and Drell As far as I can figure, you'll have to track through the charge-c process starting with Mulder's conventions for particle and antiparticle spinors. Note that often the CCD relates the complex conjugate antiparticle spinor to the particle spinor. Good luck.
Regards,
Reilly Atkinson
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Thread 'Lesser Green's function'
The lesser Green's function is defined as: $$G^{<}(t,t')=i\langle C_{\nu}^{\dagger}(t')C_{\nu}(t)\rangle=i\bra{n}C_{\nu}^{\dagger}(t')C_{\nu}(t)\ket{n}$$ where ##\ket{n}## is the many particle ground state. $$G^{<}(t,t')=i\bra{n}e^{iHt'}C_{\nu}^{\dagger}(0)e^{-iHt'}e^{iHt}C_{\nu}(0)e^{-iHt}\ket{n}$$ First consider the case t <t' Define, $$\ket{\alpha}=e^{-iH(t'-t)}C_{\nu}(0)e^{-iHt}\ket{n}$$ $$\ket{\beta}=C_{\nu}(0)e^{-iHt'}\ket{n}$$ $$G^{<}(t,t')=i\bra{\beta}\ket{\alpha}$$ ##\ket{\alpha}##...
Back
Top