Could somebody please show me the calculation which shows that the M_mu_nu representation of the Lorentz generators gives rise to a (1,0)+(0,0) representation? Thanks in advance
I don't think this is possible. M_{\mu\nu} is different for every representation and the calculations are actually the other way around. The generators are computed by knowing how the spinors behave under restricted LT's.
#3
alphaone
46
0
Thanks for the reply. I am sorry probably my notation is uncommon. When I said M_{\mu\nu} I meant the representation of the Lorentz generators when acting on a Lorentz 4-vector(so antisymmetric matrices, when all indices are raised). Also the way I learned it we started at differrent reps of the Lorentz generators and then afterwards defined the fields the transformation could act on and deduced its properties - seems to me to be some sort of chicken and egg problem. However I thought that it should be possible to compute that the vector representation is (1,0)+(0,0) as this is basically the spin of the object.
Not an expert in QM.
AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order.
But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles.
Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated...
Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/
by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections?
By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...