Mass-Radius relation of a Neutron star

AI Thread Summary
The discussion focuses on determining the mass-radius relationship for neutron stars, with an emphasis on neutron degeneracy pressure and hydrostatic equilibrium. The user seeks assistance in deriving the degeneracy pressure expression, noting that it varies as pressure equals a constant times density raised to the power of 5/3. They reference the neutron mass and proton charge radius to establish core density and derive the total mass-radius equation based on the Tolman mass equation. The derived equation indicates that for a neutron star with a 10 km radius, the mass is approximately 9.976 x 10^29 kg, highlighting the relationship's dependence on specific physical constants. Understanding these relationships is crucial for modeling neutron stars accurately.
Tuugii
Messages
14
Reaction score
0
Hey all,

I need a help to determine the Mass-Radius relationship for a neutron star. I've done it for a white dwarf, but for a neutron star I need to know the Neutron degeneracy pressure expression, can anyone please help me to solve it?

I am thinking that if I have the n.deg.pressure expression then I can use the hydrostatic equilibrium, and assume the masses of proton and neutron to be exactly equal;

I am not sure, but I might also need the density ratio? is it correct? for instance for a white dwarf, I have [ro_c]/[ro_mean] = 5.99, I don't know the value for a neutron star.

please help me,
thanks,
T
 
Astronomy news on Phys.org
for non relativistic case the degeneracy pressure varies as:- p=k*(density)^(5/3). The 'k' here you can easily calculate my first calculating the total energy of degenerate neutron gas and then differentiating it w.r.t volume to get pressure.
 
neutron star mass-radius relation...


The neutron star mass-radius relation is dependent on a particular neutron star model, however the mass-radius relation for my model based upon the Proton charge radius and Tolman mass equation solution VII:

m_n = 1.6749272928 \cdot 10^{-27} \; \text{kg} - Neutron mass
r_p = 0.8757 \cdot 10^{-15} \; \text{m} - Proton charge radius

Proton charge radius neutron density:
\rho_n = \frac{3 m_n}{4 \pi r_p^3}

Neutron star core density equivalent to Proton charge radius neutron density:
\rho_c = \rho_n

Total Tolman mass equation solution VII:
M_0(R) = \frac{8 \pi \rho_c R^3}{15} = \frac{8 \pi R^3}{15} \left( \frac{3 m_n}{4 \pi r_p^3} \right) = \frac{2 m_n R^3}{5 r_p^3}

Total mass-radius equation for the Tolman solution VII:
\boxed{M_0(R) = \frac{2 m_n R^3}{5 r_p^3}}

Mass of a 10 km radius Tolman VII neutron star:
\boxed{M_0(10 \; \text{km}) = 9.976 \cdot 10^{29} \; \text{kg}}

Note that the lower limit for total radius R, is equivalent to the Schwarzschild radius and the upper limit for total mass M(R), is equivalent to the Tolman-Oppenheimer-Volkov mass limit.
[/Color]
Reference:
http://en.wikipedia.org/wiki/Neutron"
https://www.physicsforums.com/showpost.php?p=1718805&postcount=39"
https://www.physicsforums.com/showpost.php?p=1792334&postcount=47"
http://en.wikipedia.org/wiki/Schwarzschild_radius"
http://en.wikipedia.org/wiki/Tolman-Oppenheimer-Volkoff_limit"
 
Last edited by a moderator:

Tuugii, what is your mass-radius equation for a white dwarf?
[/Color]
 
This thread is dedicated to the beauty and awesomeness of our Universe. If you feel like it, please share video clips and photos (or nice animations) of space and objects in space in this thread. Your posts, clips and photos may by all means include scientific information; that does not make it less beautiful to me (n.b. the posts must of course comply with the PF guidelines, i.e. regarding science, only mainstream science is allowed, fringe/pseudoscience is not allowed). n.b. I start this...
Asteroid, Data - 1.2% risk of an impact on December 22, 2032. The estimated diameter is 55 m and an impact would likely release an energy of 8 megatons of TNT equivalent, although these numbers have a large uncertainty - it could also be 1 or 100 megatons. Currently the object has level 3 on the Torino scale, the second-highest ever (after Apophis) and only the third object to exceed level 1. Most likely it will miss, and if it hits then most likely it'll hit an ocean and be harmless, but...
Back
Top