- #1
tzimie
- 254
- 28
Note: this is QM question, not about stellar science. I am not asking what are the lightest neutron stars found in the Universe.
The same star (say, 1 sun mass) can exist both in a form of a white dwarf and a neutron star. Both states are stable.
However, let's say I start to stripe outermost levels of a neutron star one by one (*), making it lighter and lighter. I expect that when neutron star becomes really light, the pressure would push matter outwards, creating an explosion or just increase the volume dramatically, creating a white dwarf back.
So what is that low mass limit?
(*) This is just a thought experiment, but you can actually do it by dropping small amounts of antimatter to a neutron star, so the outermost levels would burn to light, which escapes. Of course, you have to do it slowly leaving time for a star to cool down.
The same star (say, 1 sun mass) can exist both in a form of a white dwarf and a neutron star. Both states are stable.
However, let's say I start to stripe outermost levels of a neutron star one by one (*), making it lighter and lighter. I expect that when neutron star becomes really light, the pressure would push matter outwards, creating an explosion or just increase the volume dramatically, creating a white dwarf back.
So what is that low mass limit?
(*) This is just a thought experiment, but you can actually do it by dropping small amounts of antimatter to a neutron star, so the outermost levels would burn to light, which escapes. Of course, you have to do it slowly leaving time for a star to cool down.